Рефераты. Литература - Другое (книга по генетике) p> Важным преимуществом рецептор-опосредованных систем на основе липосом является их низкая иммунореактивность. Они лишены и многих других недостатков, свойственных вирусным векторным системам. Вместе с тем, до сих пор не решена проб- лема низкой частоты трансформации клеток при липосомном пе- реносе. Это обстоятельство существенно ограничивает примене- ние липосом в генной терапии (Crystal, 1995). Тем ни менее, в настоящее время рецептор-опосредованный вариант передачи генетической информации в клетки эукариот с использованием в качестве лигандов специфических антител, рецепторных белков, а также вирусных последовательностей и липосом позволяет в одной системе совместить преимущества физико-химических ме- тодов переноса ДНК и вирусных векторов и потому представляет один из наиболее перспективных и быстро развивающихся нап- равлений в трансфекции эукариотических клеток.

9.4.4 Рекомбинантные вирусы.

Конструирование векторов на базе вирусов представляет собой наиболее интересный и перспективный раздел генотера- пии. Эволюционно сложившаяся система обеспечения эффективно- го проникновения в клетки-мишени, а в случае ретровирусов и система интеграции в клеточный геном, позволяет рассматри- вать вирусы как естественные векторы чужеродной ДНК для кле- ток млекопитающих. Действительно, только с помощью вирусных векторов пока удается достичь такого уровня трансфекции кле- ток человека in vitro и in vivo, который необходим для про- явления лечебного эффекта. Это доказывают многочисленные эксперименты на животных и первые клинические испытания ут- вержденных программ генотерапии (см. 9.2). Вместе с тем, нельзя недооценивать и вполне реальную опасность патологи- ческих процессов, связанных с использованием вирусных час- тиц. В качестве векторов применяют следующие рекомбинантные вирусы: ретровирусы, аденовирусы, аденоассоциированные виру- сы, вирус герпеса, вирус спида (HIV), вирус ветряной оспы и некоторые другие (Anderson, 1992; Culver, 1994; Lowenstein,

1994; Hodgson, 1995; Kay, Woo, 1992). Учитывая большую прак- тическую значимость этих векторов, рассмотрим их более под- робно.

_Ретровирусные векторы. . Генные конструкции на основе ретровирусов (РНК-содержащих вирусов) особенно часто исполь- зуются для трансдукции ДНК ex vivo. Наиболее популярный рет- ровирусный вектор - вирус мышиного лейкоза Molony (MoMLV).

По сравнению с другими типами векторов ретровирусы обладают уникальной способностью эффективно переносить чужеродные ге- ны и стабильно интегрировать их в геном делящихся соматичес- ких клеток. Для безопасности ретровирусные последовательнос- ти модифицируют таким образом, что в инфецированных ими клетках вирусные белки не производятся. Это достигается за счет удаления или инактивации всех кодирующих последователь- ностей вируса. Репликация вирусных векторов может происхо- дить только в специальных "пакующих" клетках, в геном кото- рых встроены все гены, производящие вирусные белки. При вве- дении ретровирусных векторов в эти клетки образуются вирио- ны, несущие векторную РНК и способные лишь проникать в клет- ки-мишени, но не размножаться в них. Недостатком этой систе- мы, также как и других векторных систем на основе вирусов, является возможность контаминации производящей клеточной ли- нии нормальным ретровирусом и получения на этой основе ком- петентного по репликации вектора. Для предотвращения этого необходимо регулярное тестирование "пакующей" линии клеток.

Возможна также контаминация ретровирусного вектора клеточны- ми РНК, некоторые из них могут обратно транскрибироваться и встраиваться в геном трансдуцированных клеток. Последстия такого события могут быть выявлены в экспериментах на живот- ных моделях. Другими серьезными недостатками ретровирусных векторов является: (1) их способность переносить генетичес- кий материал только в пролифирирующие клетки; (2) способ- ность индуцировать мутации при случайной интеграции в геном;

(3) возможность спонтанной активации онкогена; (4) небольшие размеры переносимой ДНК-вставки - до 8 тысяч п.о.; (5) срав- нительно низкий титр -10!6-10!7/мл рекомбинантных вирусных частиц, получаемых для трансдукции; (6) необходимость конс- труирования соответствующих "пакующих" клонов клеток.

_Аденовирусные векторы. . В отличие от ретровирусов адено- вирусы активно инфецируют неделящиеся клетки, обладают боль- шей потенциальной пакующей способностью (ДНК-вставка> 8 кб), имеют высокий титр - 10!11/ мл, однако, не обеспечивают встраивание чужеродной ДНК в геном трансформированной клетки

(Hodgson, 1955). Использование их перспективно для генокор- рекции клеток верхних дыхательных путей, легких и других ор- ганов - мозга, печени, мышц, кожи и пр. Они эффективны при доставке аэрозольным способом, что было использовано в пер- вых клинических испытаниях по генотерапии муковисцидоза

(Crystal et al., 1994). В аденовирусные векторы также инсер- тируют маркерные гены - neo, CAT или бета-галактозидазный ген (бета-Gal) для того, чтобы идентифицировать трансдуциро- ванные клетки. Для конструирования векторов используют де- фектные по репликации аденовирусы, которые получают путем вырезания из вирусной ДНК генов, кодируюших белки (E1a,

E1b)- так называемые аденовирусные векторы 2-го поколения. В настоящее время создаются аденовирусные векторы 3-го поколе- ния, в которых помимо генов Е1а и Е1b удаляют и регуляторный ген Е4. Такая конструкция может поддерживаться только в при- сутствии клеток-хелперов (например, в культуре клеток почек человека). Удаление большего числа аденовирусных генов из векторов часто сопровождается их дестабилизацией. Это один из главных недостатков аденовирусных векторов, так как в ря- де случаев остающиеся гены, трансдуцированные в клетки-мише- ни, способствуют формированию иммунного ответа. Именно выра- женный иммунный ответ при повторных введениях аденовирусного вектора с инсерцией гена CFTR, оказался наиболее серьезным препятствием для успешной генотерапии муковисцидоза (Crystal et al., 1994). Некоторые аденовирусные белки способны оказы- вать цитотоксический эффект на высокоспециализированные клетки человека. Схема поддержания аденовирусных векторов сходна с той, которая используется для производства ретрови- русных векторов. Велика опасность их контаминации хелперным реплицирующимся вирусом. Кроме того, аденовирусы редко ин- тегрируются в геномную ДНК и потому экспрессия переносимых ими генов, как правило, носит временный характер

(Табл. 9.1). Способность инфецировать, практически, любые клетки как in vivo, так и in vitro делает особенно актуаль- ной адресную доставку таких конструкций и введение в их сос- тав тканеспецифических промотров. Например, промотор гена альфа-фетопротеина при необходимости экспрессии гена в клет- ках печени, либо промоторы генов сурфактантных белков В и С для экспрессии чужеродных генов в клетках легких.

_Аденоассоциированные вирусы . обладают значительно мень- шей пакующей способностью (около 5 кб). Однако, в отличие от ранее рассмотренных вирусов не обладают онкогенной актив- ностью, не патогенны, способны интегрироваться в геном, где пребывают в латентном состоянии. Уникальной особенностью AAV является их способность к стабильной неслучайной интеграции в один из районов хромосомы 19. Специфичность интеграции ви- руса определяется наличием в его геноме гена rep. Близко родственные AAV, так называемые, парвовирусы (H1, MVM, Lu-

III), обладают еще меньшей пакующей способностью - около 2 кб и не имеют специфичного встраивания, однако, они также рассматриваются как потенциально перспективные векторы.

_Вирус простого герпеса (HSV). . Крупный (152 кб) ДНК-со- держащий вирус, при трансформации не интегируется в геном, формируя в ядрах эписомные структуры. Уникальная особенность

HSV является его выраженная тропность к клеткам нервной сис- темы. Отсюда его перспективность как векторной системы для лечения опухолей мозга, болезни Паркинсона и многих других.

Его известное преимущество - достаточно большая пакующая способность (>30кб). Важным этапом в создании вектора на ос- нове HSV является удаление из его генома области ICP22, от- ветственной за синтез литических белков, и индукция мутации

1814, вызывающей блок транскрипции вирусной ДНК. В последнее время на основе HSV стали получать искусственные производные вируса, так назывемые ампликон-продукты, лишенные, практи- чески, всех генов HSV, но способные к репликации .

Конструкции векторов, используемых для переноса экзо- генных ДНК в клетки человека, постоянно совершенствуются в зависимости от типа клеток-мишеней. Так, новый тип векторов, сконструированных на основе псевдо-аденовирусов, сочетает в себе все преимущества аденовирусных векторов, но при этом собственные вирусные гены, практически, не оказывают никако- го повреждающего эффекта на трансфецированные клетки-мише- ни, так как содержат очень мало регуляторных элементов и последовательностей, ответственных за упаковку и репликацию аденовируса. Кроме того, псевдо-аденовирусные векторы с ус- пехом переносят чужеродные последовательности ДНК как в де- лящиеся, так и в покоящиеся клетки. Изучаются также перспек- тивы использования для генной терапии других вирусных сис- тем, таких как SV40, вирус иммунодефицита (HIV), вирус вет- ряной оспы и многие другие. В частности, заслуживают внима- ния эписомные (неинтегрирующиеся в геном реципиента) векто- ры, полученные на основе очень крупного вируса Эпштейн-Бар- ра, способного нести вставку размером от 60 до 330 кб (Sun et al., 1994).

9.4.5 Перспективы создания "идеальных" векторных систем.

Обзор существующих данных позволяет придти к заключе- нию, что, несмотря на усилия многих лабораторий мира, все уже известные и испытанные in vivo и in vitro векторные сис- темы далеки от совершенства (Hodgson, 1995). Если проблема доставки чуужеродной ДНК in vitro практически решена, а ее доставка в клетки-мишени разных тканей in vivo успешно реша- ется (главным образом, путем создания комбинированных рецеп- тор-опосредованных конструкций), то другие характеристики существующих векторной системы - стабильность интеграции, регулируемая экспрессия, безопасность - все еще нуждаются в серьёзных доработках. Прежде всего, это касается стабильнос- ти экспрессии. Последняя может быть достигнута либо при ин- теграции чужеродной ДНК непосредственно в геном реципиента, либо путем обеспечения длительной персистенции экзогенной

ДНК в ядре. До настоящего времени интеграция в геном дости- галась только при использовании ретровирусных либо адено-ас- социированных векторов (Табл. 9.1). Случайная интеграция трансфектной ДНК в геном происходит достаточно редко, причем в случае ретровирусных векторов это происходит только в де- лящихся клетках. Повысить эффективность стабильной интегра- ции можно путем совершенствования генных конструкций типа рецептор-опосредованных систем (Рис. 9.2). Однако, эти век- торные конструкции должны включать только часть вирусных ге- нов, например, гены обратной транскриптазы, ретровирусной интегразы, некоторые транспазоновые гены, парвовирусные rep-гены (см. 9.4.4). Учитывая возможный мутагенный эффект случайной интеграции, весьма перспективным представляется создание достаточно стабильных эписомных векторов. В част- ности, в последнее время особое внимание уделяется созданию векторов на базе искусственных хромосом млекопитающих (Mam- malian Artificial Chromosomes), которые могли бы достататоч- но автономно находиться в ядре, сохраняя способность к реп- ликации и экспрессии. Удобными моделями для этого представ- ляются автономно реплицирующиеся циркулярные микрохромосомы раковых клеток (Hodgson, 1995).

Особенно привлекательной в плане генной коррекции представляется возможность замены всего мутантного гена или его мутировавшей части (например, одного экзона) на нормаль- ный аналог, что может быть достигнуто путем гомологичной ре- комбинации. При этом в идеале можно ожидать не только дли- тельную персистенцию введенного гена, но и сохранение нор- мальной экспрессии. С этой целью в конструкции, используемые для переноса ДНК, включают агенты, повышающие частоту гомо- логичного спаривания, например, бактериальную рекомбина- зу. Показано, что в этих условиях частота гомологичной ре- комбинации может превышать 2.5*10-4. Это достаточно для то- го, чтобы с помощью ПЦР отобрать нужные клоны клеток. Для направленного введения фрагментов гена в строго определенные локусы генома недавно разработана система двойной замены, основанная на использовании HPRT-зависимых эмбриональных стволовых клеток и векторной конструкции содержащей ген HPRT

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.