Рефераты. Литература - Другое (книга по генетике) p> (Манк, 1990). Подробно с этим и другими современными мето- дом молекулярного и цитогенетического анализа, а также с их многочисленными модификациями и вариантами можно ознако- миться в серии работ, руководств и обзоров (Маниатис и др.,

1984; Дейвис, 1990; Sambrook et al., 1989).

1.4 ДНК-зонды, клонирование, векторные системы.

ДНК-зондом может служить любая однонитевая ДНК огра- ниченного размера, используемая для поиска комплементарных последовательностей в молекуле большего размера или среди пула разнообразных молекул ДНК. В ряде случаев в качестве зондов используют искусственным образом синтезированные оли- гонуклеотидные последовательности ДНК, размер которых обычно не превышает 30 нуклеотидов. Зондом также могут служить вы- деленные из генома последовательности ДНК. Однако значитель- но чаще такие последовательности предварительно клонируют, чтобы иметь возможность получать их в любое время и в неог- раниченном количестве. Клонирование предполагает встраивание

(инсерцию) чужеродной экзогенной ДНК в векторную молекулу

ДНК, обеспечивающую проникновение этой конструкции в бакте- риальные клетки хозяина (Рис 1.5). Химерные молекулы ДНК, составленные из фрагментов разного происхождения, носят наз- вание рекомбинантных ДНК. В качестве клонирующих векторов используют модифицированные плазмиды, фаги, космиды, ретро- и аденовирусы, а также некоторые другие генетические конс- трукции. Размеры клонированных ДНК-зондов составляют от со- тен до нескольких тысяч нуклеотидов, что определяется, глав- ным образом, способностью вектора удерживать чужеродный фрагмент ДНК. Особенно широко применяют в качестве векторов плазмидную ДНК.

Плазмиды - это небольшие кольцевые двухцепочечные мо- лекулы ДНК, которые могут присутствовать в различном числе копий в бактериальных клетках. Открытие плазмид связано с изучением генетической природы антибиотикоустойчивости. Ока- залось, что именно плазмиды могут нести гены, сообщающие клеткам устойчивость к различным антибиотикам, и потеря чувствительности инфекционных бактерий к их действию как раз и происходит за счет отбора тех штаммов, в которых имеются плазмиды с соответствующей генетической информацией. Заме- тим, что присутствие плазмиды в бактериальной клетке вовсе не обязательно для обеспечения ее жизнедеятельности, так как при отсутствии антибиотиков в среде обитания бактерий штам- мы, не содержащие плазмид, вполне жизнеспособны. Плазмиды имеют автономную систему контроля репликации, обеспечивающую поддержание их количества в клетке на определенном уровне - от одного до нескольких сотен плазмидных геномов на клетку.

Обычно для клонирования выбирают плазмиды с ослабленным контролем репликации, что позволяет им накапливаться в клет- ке в большом числе копий. Конструирование плазмидных клони- рующих векторов заключается во внесении изменений в систему контроля репликации и в добавлении или вырезании генов анти- биотикоустойчивости или удобных для клонирования иных гене- тических элементов: специфических сайтов рестрикции, инициа- ции и регуляции транскрипции и т.п. Чаще всего для клониро- вания используют плазмиды pBR322, ColE1 или их производные.

Кольцевую молекулу плазмидной ДНК можно легко перевести в линейную форму путем единичного разрыва в месте локализа- ции уникального сайта рестрикции. Присоединение (встраива- ние, инсерция) фрагмента чужеродной ДНК к концам линейной молекулы осуществляется с помощью специфических ферментов

-лигаз, после чего гибридная плазмида вновь принимает коль- цевую форму. Разработаны достаточно простые и эффективные методы трансформации бактерий, то есть искусственного введе- ния плазмид в бактериальные клетки. При этом, присутствующие в плазмидах гены антибиотикоустойчивости используют в ка- честве маркеров трансформированных бактерий для их отбора на соответствующих селективных средах. При размножении трансформированных бактерий происходит увеличение числа ко- пий инсертированного фрагмента ДНК. Таким образом, этот чу- жеродный для бактерий генетический материал может быть полу- чен, практически, в любых количествах. Выделенная из бакте- рий плазмидная ДНК или изолированный из плазмиды инсертиро- ванный фрагмент могут быть в дальнейшем использованы в ка- честве ДНК-зондов.

Для некоторых целей в качестве клонирующих векторов оказалось удобнее использовать фаги - бактериальные вирусы.

Фаговая ДНК существует только в линейной форме, поэтому при ее рестрикции образуются два фрагмента, которые сшивают с чужеродной ДНК с образованием химерного фага. Чисто техни- чески эта операция проще, чем инсерция в плазмиду. Однако, размеры встраимовой ДНК ограничены пакующей способностью го- ловки фага. Поэтому при конструировании вектора вырезают последовательности фаговой ДНК, не имеющие критического зна- чения для жизнеобеспечения фага. Такой бактериофаг может су- ществовать только в том случае, если в него встроена чуже- родная ДНК, по размерам сопоставимая с вырезанной фаговой

ДНК. Наиболее удачные конструкции векторов были получены на основе фага лямбда - лямбда gt10, лямбда gt11, лямбда Zap.

Многие проблемы молекулярной генетики успешно решаются с использованием экспрессионных векторов, содержащих в своем составе регуляторные последовательности, обеспечивающие син- тез чужеродных белков в клетках хозяина. Так в случае лямбда gt11 фаги могут быть выращены в, так называемых, репликатив- ных условиях, обеспечивающих экспрессию инсертированной ДНК.

Так как обычно ДНК встраивают в район локализации маркерного гена, позволяющего вести селекцию химерных фагов, то экспрессироваться будет слитый белок, в котором часть поли- пептидной цепи будет соответствовать маркерному белку, а часть цепи будет транслироваться в соответствии с информаци- ей, заключенной во встроенном фрагменте ДНК. Этот белок мо- жет быть идентифицирован путем детекции фрагмента маркерного белка либо с помощью антител к специфическим участкам, коди- руемым чужеродной ДНК.

В последнее время большое распространение получило клонирование в космидах - конструкциях, обьединяющих в себе преимущества плазмид и фагов. Космиды получены на основе плазмид, но в них введены генетические элементы фага лямбда, отвечающие за упаковку ДНК в фаговой частице. Такие векторы могут существовать не только в виде плазмид, но и в виде фа- говых частиц in vitro. Космиды обладают большей клонирующей способностью по сравнению с плазмидными и фаговыми векторами и могут нести до 40-45 тысяч пар оснований инсертированной

ДНК. Все вышеперечисленные векторы используются для клониро- вания в прокариотических системах.

Векторы, пригодные для направленного переноса в эука- риотические клетки, конструируют на основе прокариотических или дрожжевых плазмид - единственных плазмид, найденных в клетках эукариот, а также используют различные эукариоти- ческие вирусы, чаще всего ретровирусы, аденовирусы или аде- ноассоциированные вирусы. При использовании плазмид в ка- честве клонирующих векторов в них вводят вирусные последова- тельности, ответственные за начало репликации. Введение век- торов в эукариотические клетки часто осуществляют путем ко-трансформации, то-есть одновременно вводят плазмиду и сегмент чужеродной ДНК. Векторные последовательности, вве- денные в клетки эукариот, могут сохраняться там в течение нескольких дней в виде суперскрученных кольцевых молекул - эписом. В редких случаях возможна интеграция экзогенной ДНК в хромосомную ДНК. В этих случаях введенные последователь- ности устойчиво сохраняются в геноме клеток хозяина и насле- дуются по менделевскому типу (см. Глава VIII).

Для клонирования субхромосомальных фрагментов ДНК, со- держащих целые гены, разработана система дрожжевых минихро- мосом. Искусственные дрожжевые хромосомы (YAC - artificial yeast chromosomes) конструирют на основе плазмидных векто- ров, содержащих в своем составе известные центромерные и те- ломерные последовательности хромосом дрожжей, необходимые для поддержания и репликации векторов в клетках хозяина. Та- кие системы способны удерживать фрагменты чужеродной ДНК размером в несколько сотен тысяч и даже миллионов пар осно- ваний.

Остановимся коротко на методах введения векторов в клетки хозяина. Но прежде всего, определим основные термины. Как уже упоминалось, введение плазмидной ДНК в бактериальные клетки назвается трансформацией. Если перенос генов осущест- вляется с помощью фага, то говорят о трансдукциии. Процесс введения экзогенной ДНК в эукариотические клетки называется трансфекцией. Все эти методы основаны на подборе условий, облегчающих прохождение плазмидной или фаговой ДНК через клеточные и ядерные мембраны. Для повышения проницаемости мембран используют два разных подхода. В первом случае про- водят обработку векторной ДНК и клеток хозяина буферными растворами, повышающими проницаемость клеточных и ядерных мембран (метод кальций-фосфатной преципитации,

DEAE-декстран-опосредованная трансфекция). Во втором случае используют краткосрочное физическое воздействие на клетки для создания в мембранах микропор, проходимых для макромоле- кул ДНК (метод электропорации - воздействие высоковольтным электрическим полем, "бомбардировка" частицами золота и т.п.). Более подробно проблемы векторов и методы генетичес- кой трансфрмации (трансдукции) рассмотрены в Главе IX. Воп- росам молекулярного клонирования также посвящена обширная литература (Гловер, 1988; 1989; Шишкин, Калинин, 1992; Мани- атис и др., 1984; Дейвис, 1990; Sambrook et al., 1989).

1.5 Геномные и к-ДНК-овые библиотеки генов, их скрининг.

Рассмотрим более подробно методы выделения и идентифи- кации фрагментов ДНК, необходимых для анализа или для использования в качестве ДНК-зондов. Основным источником этих фрагментов являются искусственным образом сконструиро- ванные библиотеки генов, в которых осуществляют поиск или скрининг нужных последовательностей ДНК разными методами в зависимости от специфических особенностей этих последова- тельностей. Библиотека генов это полный набор клонированных перекрывающихся фрагментов ДНК, полученных в результате рестрикции или механического разрезания тотальной ДНК, выде- ленной из какого-либо специфического источника. В зависи- мости от происхождения ДНК различают геномные и кДНК-овые библиотеки генов. Для конструирования геномных библиотек ис- пользуют ДНК, выделенную из тканей, культур клеток, из от- дельных хромосом или из их фрагментов. При создании кДНК

-овых библиотек выделяют тотальную мРНК из тканей или куль- тивируемых клеток, в которых заведомо экспрессируются инте- ресующие исследователя гены. На следующем этапе методом об- ратной транскрипции (РНК-ДНК) синтезируют кДНК. Затем её разрезают и упаковывают в выбранный для клонирования вектор.

Схема конструирования геномных и кДНК-овых библиотек предс- тавлена на рис.1.6. Как видно на схеме в геномных библиоте- ках присутствуют не только кодирующие последовательности ге- нов, но также несмысловые внутригенные последовательности - интроны и межгенные участки ДНК, причем удельный вес некоди- рующих фрагментов ДНК значительно выше. кДНК-овые библиотеки состоят только из кодирующих - экзонных, областей генов. На- иболее удобный размер инсертируемой ДНК сопоставим со сред- ним размером гена млекопитающих и составляет 15 - 25 тысяч пар оснований (kb). Оптимальный по размеру набор перекрываю- щихся последовательностей геномной ДНК человека получается после ее переваривания частощепящими рестриктазами Sau3a или

Mbo1. Информационная емкость каждой библиотеки, то есть ко- личество клонов с различными инсертированными фрагментами

ДНК, определяется размерами исходного генома и необходи- мостью присутствия каждой его последовательности хотя бы в одном клоне. Поэтому достаточно представительные геномные библиотеки млекопитающих обычно содержат не менее 8*10!5 -

10!6 различных клонов.

Чаще библиотеки конструируют на основе фаговых или космидных клонирующих векторов, так как в таком виде легче хранить большие количества химерных ДНК. Для создания библи- отек генов человека особенно удобны векторы, полученные на основе фага лямбда, такие как EMBL3 или EMBL4. Пакующая способность этих векторов от 9 до 23 кб, они содержат много удобных клонирующих сайтов, так что для инсерции ДНК могут быть использованы разные рестриктазы. Кроме того, эти векто- ры не содержат последовательностей плазмид, наиболее часто используемых для клонирования : pBR322 и ColE1. Это позволя- ет проводить отбор нужных клонов с помощью фаговой ДНК, не вырезая предварительно инсертированный в нее фрагмент. Для создания библиотек клонов, содержащих большие районы ДНК, используется технология искусственных дрожжевых хромосом

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.