Рефераты. Литература - Другое (книга по генетике) p> Естественно, что реализация этих структурных факторов в те или иные типы мутаций возможна лишь в процессе репликации

(1,2) и рекомбинации (3) ДНК хромосом.

Как подробно рассмотрено в серии работ D.N Cooper и

M.Кrawczak (1990, 1991), наличие в первичной структуре ДНК прямых повторов, идентичных повторяющихся последователь- ностей, инвертированных повторов, шпилечных структур, квази- палиндромных последовательностей и симметричных элементов генома (например CTGAAGTC) нередко ведет к образованию пе- тель при репликации ДНК вследствие скользящего нарушения спаривания (slipping mispairing) родительской и дочерней це- пей ДНК. Эти новые структурные элементы ДНК либо уничтожа- ются ферментами системы репарации, что ведет к делециям, ли- бо сохраняются и дублируются, что приводит к дупликациям и инсерциям, при этом возникшие изменения закрепляются при последующих раундах репликации. Авторы приходят к следующим выводам: (1) возникновение подобных мутаций происходит неслучайно, но зависит от особенностей первичной структуры

ДНК в месте перестройки; (2) в основе структурных перестроек

ДНК лежат ошибки репликации; (3) принципиально сходные моде- ли эндогенного мутагенеза характерны как для делеций, так и для инсерций. Считается, что именно механизм скользящего на- рушения спаривания ответственен за мутации экспансии, приво- дящие к быстрому увеличению числа тринуклеотидных повторов и к нарушению работы соответствующих генов, а также за высокую изменчивость, наблюдаемую во многих местах локализации мини- и микросателлтных тандемных повторов.

Недавно показано, что повышенной эндогенной мутаген- ностью обладают вообще все последовательности ДНК, находящи- еся в определенном конформационном состоянии, а именно в состоянии изгиба (bent DNA) (Milot et al.,1992). Известно, что такая конформационная структура ДНК свойственна промо- торным частям генов, местам начала репликации (origins of replication), местам контакта хромосом с ядерным матриксом.

Именно эти участки ДНК являются местами посадки ферментов топоизомераз, вовлеченных в процессы репликации, транскрип- ции, рекобинации, в том числе, как оказалось, и в процесс негомологичной (незаконной -illegitimate) рекомбнации. Уста- новлено, что именно негомологичная рекомбинация может приво- дить не только к внутригенным делециям, дупликациям и другим мутациям на молекулярном уровне, но и является одной из основных причин крупных структурных хромосомных перестроек типа транслокаций, инверсий и других.

Замены или утраты отдельных оснований в геномной ДНК могут возникать в результате нарушения процессов репликации и репарации. Ошибки в ДНК матрице, вызванные действием пов- реждающих внешних агентов, либо спонтанной деградацией осно- ваний закрепляются в последующих циклах репликации. Основные типы спонтанной деградации включают потерю оснований и про- цесс дезаминирования. Особенно чувствительны к дезаминирова- нию цитозиновые остатки. Установлено, что у позвоночных поч- ти половина всех цитозиновых остатков в ДНК метилирована в

5-ом положении. Процесс метилирования особенно часто захва- тывает области повторов 5'CpG 3', расположенные как внутри генов, так и в их промоторных частях. При дезаминировании

5-метилцитозин превращается в тимин. В цикле последующей репликации, возникший в результате дезаминирования мисмэтч

(T-G) может либо коррегироваться в нормальный вариант (С-G), либо приводить к мутациям типа трансцизий (Т-G) или (С-А).

Естественно, что гены, имеющие в своей структуре большой процент CpG оснований, особенно часто подвергаются спонтан- ному мутированию типа трансцизий. В частности, преобладание подобных точечных мутаций известно для генов факторов IX и

VIII свертывания крови, для гена фенилкетонурии и других.

Так, из 76 мутаций гена фактора IX в 21 случае найдены трансцизии CpG - TpG или СрА (Green et al.,1990). Преоблада- ние таких мутаций отмечено и в 22 CpG дуплетах гена фенила- ланингидроксилазы у больных фенилкетонурией (Abadie et al.,1989).

Другим важным фактором эндогенного мутагенеза является наличие тесно сцепленных с генами гомологичных последова- тельностей ДНК (псевдогенов). В мейозе такая ситуация неред- ко приводит к неравной гомологичной рекомбинации и, как следствие этого, к генной конверсии, сопровождающейся струк- турными перестройками типа делеций, дупликаций и т.п. Подоб- ный механизм мутаций, как оказалось, является доминирующим для гена 21-гидроксилазы (Morel, Miller,1991), а также для гена фактора VIII свертывания крови (Lakich et al.,1993).

Важная роль ошибок рекобинации в этиологии структурных поло- мок гена особенно очевидна при анализе гена дистрофина, му- тации которого ведут к миопатии Дюшенна. Известно, что в 60% случаев мутации этого гена представляют собой делеции, зах- ватывающие один или несколько соседних экзонов. Известно также, что подавляющее большинство делеций сосредоточено в двух "горячих" районах этого гигантского по размерам гена

(2,2 Мб), и при этом частота внутригенных рекомбинаций почти в 4 раза больше, чем можно предполагать, исходя из его раз- меров (Oudet et al.,1992). Любопытно отметить, что в одной из этих горячих точек (интрон 7) недавно обнаружен кластер транспозоноподобных повторяющихся последовательностей.

Удельный вес мобильных (транспозонподобных) элементов типа

Alu и Line повторов (см. Главу 2) в возникновении генных му- таций до конца не выяснен. Имеются единичные наблюдения о реальном перемещнии этих элементов по типу конверсии и их интеграции в структурные гены аденозиндезаминазы, аполипоп- ротеина С, факторов VIII и IX свертывания крови, кальмодули- на (Vidaud et al.,1993).

Раздел 5.4 Механизмы поддержания и распространения му- таций в популяциях.

Частоты и характер распределения мутаций в популяциях зависят от многих факторов, главными из которых являются частоты мутагенеза и давление естественного отбора. Значи- тельное влияние на этот процесс оказывают также структурные особенности популяций, такие как размеры, степень географи- ческой и этнической изолированности, величина инбридинга, характер миграции населения.

Для всех мутаций, возникающих за счет повышенного уров- ня спонтанного мутагенеза, характерны следующие особенности

- неслучайный характер внутригенной локализации мутаций, сходство типов нарушений при отсутствии полной молекулярной идентичности между ними. В отличие от спонтанных мутаций, вызыванных эндогенными причинами, для мутаций, индуцирован- ных действием неблагоприятных факторов внешней среды, про- мышленными и сельскохозяйственными вредностями, ионизирующим облучением, химическими агентами и прочим, специфики в типах мутаций и в характере их локализации не наблюдается. В попу- ляциях, находящихся в области действия таких неблагоприятных факторов, будет повышена частота мутаций в различных генах, однако спектр индуцированных мутаций будет достаточно разно- образным.

Рассмотрим теперь влияние отбора на процесс поддержа- ния и распространения мутаций в популяциях. Многие гены мо- ногенных наследственных заболеваний рецессивны, то есть му- тации в них в гетерозиготном состоянии не оказывают вредного влияния на жизнеспособность. Поэтому после возникновения му- тация может распространяться в популяции до определенной концентрации, практически не подвергаясь элиминирующему действию естественного отбора. В дальнейшем частота этой му- тации достигнет равновесного состояния и не будет повышаться за счет выщепления гомозиготных особей, жизнеспособность и репродуктивные качества которых резко снижены. При этом ско- рость элиминации мутации из популяции резко замедляется при снижении ее частоты и, практически, после возникновения му- тация может сохраняться в популяции на протяжении многих десятков и даже сотен поколений. Различные мутации могут случайным образом получить большее распространение в изоли- рованных популяциях или среди групп населения, отличающихся повышенным уровнем инбридинга. В целом, при отсутствии дав- ления отбора по отношению к гетерозиготным особям общая кон- центрация мутантных аллелей в популяции определяется часто- той их спонтанного возникновения, при этом пул мутаций будет состоять из большого количества разнообразных аллелей, каж- дый из которых будет представлен редкими или даже единичными случаями в различных популяциях.

Однако, специфические мутации могут получить значи- тельно более широкое распространение в тех случаях, когда гетерозиготные особи имеют какие-либо селективные преиму- щества. Таким эффектом может обладать сама мутация, но более вероятна возможность неравновесности по сцеплению между этой мутацией и селективными аллелями другого локуса. Гетерозиго- ты могут получить преимущество при изменении условий окружа- ющей среды, в каких -то экстремальных ситуациях или среди определенных групп населения. Так например, мутации, повыша- ющие устойчивость организма к действию инфекционных агентов, могут получить широкое распространение в период массовых эпидемий. Одновременно повысится частота всех аллелей других локусов, находящихся в неравновесности по сцеплению с данной мутацией. Мутантные аллели, обеспечивающие селективное преи- мущество гетерозигот, становятся преобладающими во многих популяциях, не полностью изолированных друг от друга. При этом наибольшая частота таких аллелей будет наблюдатся в ра- йонах, где влияние поддерживающего отбора было максимальным

(например, в эпицентре эпидемии). По мере удаления от этого района концентрация таких мутантных аллелей будет умень- шаться, причем их распределение в разных популяциях будет коррелировать с характером миграции населения. Подобный ха- рактер распределения определенного мутантного аллеля в частично изолированных популяциях принято связывать с так называемым эффектом основателя или родоначальника.

Исследование спектров распределения мутаций в различ- ных популяциях позволяет делать предположения относительно возможного происхождения таких повреждений и тех механизмов, которые лежат в основе их распространения среди населения.

Рассмотрим наиболее вероятные интерпретации различных вариантов распределения аллелей в популяциях. Мутации, представленные у единичных больных или в группе родственных индивидуумов и не имеющие специфической внутригенной локали- зации, по-видимому, являются следствием естественного мута- ционного процесса. Если в каких-то популяциях концентрация мутаций в различных генах повышена, вероятно, они находятся в зоне действия внешних неблагоприятных факторов, индуцирую- щих возникновение нарушений в структуре ДНК. В тех случаях, когда локализация и типы мутаций носят специфический харак- тер можно предполагать наличие особых молекулярных механиз- мов контроля повышенного уровня мутагенеза в определеннных районах генома. Распространение специфических мутаций в изо- лированных популяциях происходит за счет их ограниченного размера и повышенного уровня инбридинга (эффект родоначаль- ника). И, наконец, обнаружение градиентного распределения мутаций, превалирующих в различных, частично изолированных популяциях позволяет предполагать селективное преимущество гетерозиготных носителей мутаций на определенных этапах эво- люционного развития.

Таким образом, сопоставляя спектры распределения одно- типных мутаций у жителей разных континентов, разных стран, у людей, принадлежащих к различным расам и национальностям можно определить степень генетической близости между всеми этими группами и реконструировать их филогенетические отно- шения (Cavalli-Sforza,Piazza,1993). Одним из практических следствий этих исследований является возможность прогнозиро- вать наиболее вероятные мутации в различных генах у пациен- тов разного этнического происхождения, что приводит к суже- нию спектра поиска специфических мутаций. Особый интерес в этом смысле представляют наиболее распространенные мутации

(например delF508 при муковисцидозе; R408W - при фенилкето- нурии и многие другие). Для профилактики наследственных за- болеваний необходима разработка эффективных и простых мето- дов молекулярной диагностики таких мутаций как у больных, так и у гетерозиготных носителей с целью проведения скрини- рующих программ среди населения и выявления максимально воз- можного числа семей с повышенным риском рождения больного ребенка.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.