Рефераты. Литература - Другое (книга по генетике) p> Уровень экспрессии чужеродных белков в дрожжевых клет- ках вдвое, а в клетках млекопитающих в десятки раз ниже, чем в бактериальных. Однако, в бактериальных клетках отсутствуют ферментативные системы, обеспечивающие процессинг эукариоти- ческих белков. Поэтому эукариотические системы удобнее использовать для изучения посттрансляционных модификаций белка - гликозилирования, то есть присоединения к полипеп- тидной цепи углеводных остатков; скручивания белка с образо- ванием третичной структуры, часто, за счет возникновения дисульфидных связей; и N-концевых модификаций, стабилизирую- щих структуру белка. В ДНК-экспрессионных системах может быть синтезировано достаточно много белка, чтобы получить его в кристаллической форме и исследовать пространственную структуру и функциональное назначение отдельных доменов

(Хэймс, Хиггинс, 1987).

Использование экспрессионных библиотек для изоляции ко- дирующих последовательностей гена рассматривалось ранее (см.

Глава II). После секвенирования кДНК можно, исходя из гене- тического кода, прогрозировать аминокислотный состав белка и произвести компьюторный поиск в банке данных гомологичных последовательностей в составе белков с уже известной струк- турой и функциями. Выявление родственных белков, близких по своему полипептидному составу, значительно ускоряет и облег чает дальнейший молекулярный анализ функционирования иссле- дуемого белка в клетке. Аминокислотная последовательность белка позволяет прогнозировать его третичную структуру, идентифицировать домены, оценивать функциональную значимость целого белка и отдельных его компонентов. Не менее важным практическим следствием этих данных является также возмож- ность получения антител к строго специфичным участкам бел- ка. Для этого могут быть использованы два подхода - биохими- ческий и молекулярно-генетический. В первом случае для имму- низации используют искусственно синтезированные полипептиды, которые пришивают к белковой молекуле-носителю (гаптену).

Размеры таких полипептидов, обычно, не превышают 30 амино- кислот - они не могут быть очень большими из-за высокой сто- имости и трудоемкости синтеза длинных молекул. При втором подходе экзонные участки гена инсертируют в экспрессионный вектор в область, кодирующиую селектируемый белок. В резуль- тате экспрессии такой конструкции получают слитый белок, в котором наряду с аминокислотной последовательностью селекти- руемого маркера содержится определенный фрагмент исследуемо- го белка. Эту химерную молекулу и используют для иммунизации животных и получения моновалентных или моноклональных анти- тел. При наличии антител могут быть применены различные им- мунологические подхооды для анализа тканеспецифического и внутриклеточного распределения белка, исследования его моди- фикаций, а также для получения нативного белка в препаратив- ных количествах.

Cледующим шагом на пути анализа молекулярных механизмов регуляции экспрессии гена является идентификация тех наруше- ний в структуре, локализации и активности молекул мРНК и белка, которые возникают вследствие генетических мутаций. Мы уже упоминали об огромном значении культур мутантных клеток для подобных исследований. Однако, многие патологические процессы, протекающие в организме больного, не могут быть исследованы in vitro. С другой стороны, возможности получе- ния необходимого количества клеток и тканей пациента и испы- тания in vivo различных схем лечения значительно ограничены.

Поэтому для многих наследственных болезней эффективность изучения основ патогенеза существенным образом зависит от наличия адекватных биологических моделей. Способы конструи- рования таких моделей подробно изложены в Главе YIII.

ГЛАВА II.

ГЕНОМ ЧЕЛОВЕКА, СТРУКТУРА ГЕНОВ.

Раздел 2.1. Определение генома и его основных элемен- тов.

Термин геном используется для обозначения полной гене- тической системы клетки, определяющей характер онтогенети- ческого развития организма и наследственную передачу в ряду поколений всех его структурных и функциональных признаков.

Понятие генома может быть применено к таксономической груп- пе, виду, отдельной особи, клетке, микроорганизму или ви- русу. Так, можно говорить о структуре генома эукариот и про- кариот, сравнивать геномы разных видов, изучать особенности строения генома у конкретных индивидуумов или следить за из- менениями, происходящими в геноме специфических клеток в процессе их онтогенетической дифференцировки. Часто геном определяется как генетическая информация, заключенная в мо- лекулах ДНК одной клетки. Однако, такие факты, как отсутствие связи между количеством ДНК в расчете на гаплоид- ный геном и таксономическим статусом видов, а также много- численные примеры существования огромных различий в содержа- нии ДНК между близкородственными видами (так называемый

"С-парадокс") свидетельствуют о том, что далеко не все участки ДНК связаны с информационными функциями. Понятия ге- нома и ДНК в значительной степени тождественны, так как основные принципы организации и функционирования генома це- ликом определяются свойствами ДНК. Присущие этим молекулам потенциальные возможности практически неограниченного струк- турного разнообразия определяют все многообразие мира живых существ, как на уровне межвидовых, так и индивидуальных раз- личий в пределах одного вида (Баев и др.,1990; Ратнер,1985).

Процесс эволюции и дифференцировки отдельных видов, как правило, сопровождался накоплением изменений в структуре ге- нома. Это касается, прежде всего, таких параметров, как ло- кализация и характер упаковки ДНК в клетках; количество ДНК, приходящееся на гаплоидный геном; типы, соотношение и функ- ции кодирующих и некодирующих нуклеотидных последователь- ностей; регуляция экспрессии генов; межпопуляционная вариа- бильность и филогенетический консерватизм первичной структу- ры генома. В пределах одного вида основные параметры генома достаточно постоянны, а внутривидовое разнообразие обеспечи- вается за счет мутационной изменчивости, то есть выпадения, вставки или замены нуклеотидов на сравнительно небольших участках ДНК. Чаще всего такие изменения касаются не- экспрессируемых элементов генома (интронов, псевдогенов, межгенных спэйсерных участков ДНК и т.д.).

Геномы эукариот, по-существу, можно рассматривать как мультигеномные симбиотческие конструкции, состоящие из обли- гатных и факультативных элементов (Golubovsky, 1995). Основу облигатных элементов составляют структурные локусы, коли- чество и расположение которых в геноме достаточно постоянно.

Присутствие в хромосомах некоторых видов повторяющихся ДНК, амплифицированных участков, ретровирусных последователь- ностей, псевдогенов, также как наличие в клетке эписом, рет- ротранскриптов, ампликонов, дополнительных B-хромосом и раз- личных цитосимбионтов (вирусов, бактерий, простейших) явля- ется не строго обязательным, их количество и положение может значительно варьировать, то есть эти элементы являются фа- культативными. В то же время участие факультативных элемен- тов в наследственной передаче признаков, в формировании му- тационной изменчивости и в эволюционных преобразованиях ви- дов несомненно доказано. Кроме того, существует непрерывный переход от одних состояний к другим за счет инсерции экстрахромосомных ДНК в хромосомы и выстраивания транспозо- ноподобных мобильных элементов из хромосом. Следовательно, несмотря на значительные отличия факультативных последова- тельностей от облигатных по характеру основных информацион- ных процессов (репликации, транскрипции, трансляции и сегре- гации), они также должны рассматриваться, как важнейшие эле- менты генома.

Остановимся теперь более детально на основных принципах организации генома человека. В каждой диплоидной клетке с 46 хромосомами содержится около 6 пикограмм ДНК, а общая длина гаплоидного набора из 23 хромосом составляет 3.5 * 10!9 пар нуклеотидов (Kao, 1985). Этого количества ДНК достаточно для кодирования нескольких миллионов генов. Однако, по многим независимым оценкам истиное число структурных генов нахо- дится в пределах от 50 000 до 100 000. В разделе 2.4 изложе- ны современные подходы, используемые для подсчета общего ко- личества генов, из которых следует, что наиболее вероятная оценка их числа составляет около 80 000. Сопоставляя это значение со средними размерами гена и соотношением между ве- личиной их экзонных и интронных областей, можно заклю- чить,что кодирующие последовательности ДНК занимают не более

10-15% всего генома (McKusick, Ruddle, 1977). Таким образом, основная часть молекул ДНК не несет информации об амино- кислотной последовательности белков, составляющих основу лю- бого живого организма, и не кодирует структуру рибосомаль- ных, транспортных, ядерных и других типов РНК. Функции этой

"избыточной" (junk) ДНК не ясны, хотя ее структура изучена достаточно подробно. Предполагается, что эта ДНК может участвовать в регуляции экспрессии генов и в процессинге

РНК, выполнять структурные функции, повышать точность гомо- логичного спаривания и рекомбинации, способствовать успешной репликации ДНК и, возможно, является носителем принципиально иного генетического кода с неизвестной функцией.

Наиболее общая характеристика генома может быть получена с помощью анализа кинетики реассоциации молекул ДНК. Динами- ка плавления геномной ДНК обнаруживает присутствие по край- ней мере трех различающихся по химической сложности фракций

(Льюин, 1987; Газарян, Тарантул, 1983). Быстро ренатурирую- щая фракция ДНК состоит из относительно коротких высокопов- торяющихся последовательностей; в промежуточную фракцию вхо- дит множество умеренно повторяющихся ДНК - более протяжен- ных, но представленных меньшим числом копий; медленно рена- турирующая фракция объединяет в себе уникальные последова- тельности ДНК, встречающиеся в геноме не более 1-2 раз.

С помощью молекулярного анализа проведена идентификация основных классов повторяющихся последовательностей ДНК, составляющих более 35% всего генома человека и включающих сателлитную ДНК, инвертированные повторы, умеренные и низко- копийные повторы, а также мини- и микросателлитные последо- вательности ДНК. Классификация этих типов повторов достаточ- но условна и основана, главным образом, на двух характе- ристиках: длине повторяющихся коровых единиц, которая может варьировать от 1-2 до более, чем 2000 п.о., и числе их ко- пий, также меняющихся в очень широких пределах - от десятка до миллиона на гаплоидный геном. Не менее важными характе- ристиками различных классов повторяющихся ДНК являются нук- леотидная последовательность "коровых" единиц повтора, спе- цифичность их организации, хромосомная локализация, внутри- и межвидовая стабильность, а также возможные функции этих типов ДНК.

Раздел 2.2. Повторяющиеся последовательности ДНК.

Сателлитная ДНК это класс высокоповторяющихся последо- вательностей, составляющих около 10% всего генома человека

(Kao, 1985). При центрифугировании геномной ДНК в градиенте плотности CsCl эти последовательности образуют четыре от- дельных сателлитных пика с различными средними значениями плавучей плотности. Методом гибридизации in situ показано присутствие сателлитной ДНК преимущественно в центромерных, теломерных и гетерохроматиновых районах большинства хро- мосом, при этом характер гибридизации сходен для всех четы- рех групп и не зависит от принадлежности ДНК-зондов к се- мействам повторов, образующих различные сателлитные пики. В каждой из этих групп, однако, присутствует небольшое коли- чество последовательностей, имеющих специфическую хромосом- ную локализацию. Так например, около 40% длинного плеча Y хромосомы составляет семейство последовательностей, тандемно повторяющихся более 3000 раз и не найденных в других хро- мосомах.

Выделяют три основных типа сателлитной ДНК: (1) короткие

- от 2 до 20 п.о., стабильные тандемные повторы с кратностью в несколько десятков тысяч раз, которые иногда перемежаются с неповторяющимися последовательностями; (2) кластеры более протяженных повторов, слегка различающихся по нуклеотидной последовательности; (3) сложные, достигающие нескольких со- тен пар нуклеотидов, повторяющиеся последовательности раз- личной степени гомологии (Газарян,Тарантул,1983). К послед- нему типу относятся альфа-сателлитные или альфоидные ДНК, среди которых найдено много хромосом-специфических последо- вательностей. Размеры повтрояющихся "коровых" единиц альфо- идной ДНК составляют около 170-200 п.о. В геноме человека и других приматов эти мономеры организованы в кластеры по 20 и более "коровых" единиц. После расщепления рестриктазой BamHI в альфоидной ДНК выявляется серия фрагментов, длиной около 2

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.