Рефераты. Артериальная гипертензия: этиология и патогенез, клиника, диагностика и дифференциальная диагностика...

Следовательно, гипертензия может возникнуть в 2-х случаях:

1)       Увеличение Q (сердечный выброс, МОС). Q=УО ´ ЧСС, где УО – ударный объём, то есть объем крови, выбрасываемый левым желудочком за 1 его систолу. Значит АД будет расти либо при увеличении УО, либо при увеличении ЧСС (?), что может быть за счёт задержки натрия и воды и роста ОЦП.

2)       Увеличение R из за сужения резистивных сосудов.

Изменение как первого, так и второго параметра осуществляется при участии нейрогуморальных систем регуляции АД.

Нейрогуморальные системы регуляции АД

Согласно синтетической концепции регуляции АД (А. Гайтон) биокибернетические механизмы сосредоточены в 2-х основных системах:

1)       Система кратковременного действия или адаптационная (пропорциональная) контрольная система;

2)       Система длительного действия или интегральная контрольная система.

Система кратковременного действия

Система быстрого кратковременного действия представлена 2-мя основными регуляторными контурами или петлями биологической обратной связи:

Ø       Барорецепторы крупных артерий ð центры ГМ ð симпатические нервы ð резистивные сосуды, емкостные сосуды, сердце ð повышение АД.

Ø       Почечный (плазменный) эндокринный контур (ЮГА) ð ангиотензин II ð резистивные сосуды ð повышение АД.

Барорецепторный рефлекс

Барорецепторы дуги аорты и синокаротидной зоны + изменение АД ð залповая афферентная импульсация через IX-X пару ЧМН ð 3 интегральных участка ЦНС:

1)       Дорзомедиальная медулла, nuclei tractus solitarii (NTS) ð депрессорный эффект (опосредованный L-глутаматом, субстанцией P);

2)       Каудальная вентролатеральная медулла ð снижение периферической симпатической активности, снижение ОПСС ð депрессорный эффект (опосредован норадреналином);

3)       Ростральная вентролатеральная медулла ð повышение АД.

Барорефлексы достигают максимального эффекта через 10-30 секунд после начала воздействия и отвечают за колебание АД от 100 до 125 мм. рт. ст.

Почечный (плазменный) эндокринный механизм

К эндокринным аппаратам почек относят:

ü        ЮГА, выделяют ренин и эритропоэтин;

ü        Интерстициальные клетки мозгового вещества и нефроциты собирательных трубок, вырабатывают простагландины;

ü        ККС;

ü        Клетки APUD-системы, содержащие серотонин.

ЮГА

В этом аппарате выделяют 4 компонента:

1.        Гранулированные эпителиоидные клетки в стенке афферентной артериолы (юкстагломерулярные клетки);

2.        Клетки плотного пятна;

3.        Клетки Гурмагтига (lacis-клетки);

4.        Мезангиальные клетки клубочка.

ЮГА-клетки вырабатывают ренин – катализатор начального этапа образования ангиотензина. В ЮГА-клетках ренин сосредоточен в специальных секреторных гранулах. Помимо этих гранул в клетках имеются и неспецифические, например гранулы липофусцина.

Роль своеобразного рецептора играет плотное пятно, реагирующее на качественный состав содержимого дистального канальца. Плотное пятно в свою очередь взаимодействует с эпителиоидными клетками через клетки Гурмагтига, что имеет морфологические доказательства. Клетки Гурмагтига, негранулированные гладкомышечные клетки и мезангиальные клетки при гипертрофии ЮГА могут участвовать в выработке ренина, превращаясь в ЮГА-клетки.

ИК мозгового вещества и клетки собирательных трубочек

Ось ИК мозгового вещества ориентированна перпендикулярно к длиннику сосочка пирамиды, они расположены параллельно друг другу и лежат между собирательными трубочками, сосудами и тонкими сегментами петель Генле. ИК имеют длинные цитоплазматические отростки, позволяющие им контактировать с сосудами, канальцевым аппаратом почки и друг с другом. Клетки содержат липидные капли, причем концентрация гранул в ИК и самих ИК в мозговом веществе почки возрастает по направлению к вершине сосочка.

Функция ИК заключается в синтезе и выделении почечных простагландинов. Нефроциты собирательных трубочек также участвуют в синтезе почечных простагландинов, но меньше, чем ИК.

Калликреин-кининовая система

Представлена в почках нефроцитами дистальных канальцев. Калликреин, выделяясь в просвет канальцев, взаимодействует с кининогенами; образующиеся кинины могут достигать мозгового вещества почки и вызывают высвобождение простагландинов из ИК и НСТ.

Взаимодействие эндокринных аппаратов почек

Клеточная гетерогенность ЮГА обеспечивает ауторегуляцию его функций: клетки плотного пятна улавливают изменения состава мочи (снижение концентрации хлорида натрия в моче, например, ведет к повышению активности ренина в плазме); мезангиальные клетки, обладающие рецепторами к ангиотензину II, улавливают изменения состава плазмы крови, а эпителиоидные и гладкомышечные клетки ЮГА, имеющие b-рецепторы, - изменения уровня артериального давления. Синтез ренина находится под контролем простагландинов, синтез простагландинов – под контролем ККС.

Почечный механизм проявляет активность в узком диапазоне – от 100 до 65 мм. рт. ст. В основном включается при острой гипотензии.

ЮГА выделяет ренин, который в норме на 80% находится в неактивном состоянии (проренин). Ренин является протеолитическим ферментом – аспартилпротеазой. Допускается, что активизация проренина осуществляется почечным калликреином. Повреждённые почки, в отличие от здоровых, секретируют преимущественно активный ренин, но повреждение не влияет на выделение проренина.

Ренин взаимодействует с плазменным белком a2-глобулином (тетрадекапептид), называемый субстратом ренина или ангиотензиногеном. В результате образуется ангиотензин I (декапептид).

Ангиотензин I под влиянием ангиотензинконвертирующего фермента (АКФ) превращается в ангиотензин II. АКФ является дипептидилкарбоксипептидазой, отщепляющей с С-концевого участка молекулы ангиотензина I 2 аминокислотных остатка.

Дигидропептидилкарбоксипептидаза выполняет 2 функции:

  1. Функция АКФ;
  2. Функция кининазы II – инактивация брадикинина в результате отщепления с С-конца 2-х аминокислотных остатков.

Кроме того, АКФ участвует в метаболизме атриопептина, субстанции Р, энкефалинов, b-цепи инсулина, b-липотропина, рилизинг фактора лютенизирующего гормона.

АПФ (дипептидилкарбоксипептидаза) идентична кининазе II, вызывающей разрушение брадикинина.

В соматической форме АКФ имеется 2 активных центра, гомологичных домена: в N-участке, C-участке молекулы фермента. Каталитическая активность и химическая структура N и C доменов неодинаковы. C-домен катализирует расщепление ангиотензина I и брадикинина, тогда как N-домен расщепляет преимущественно рилизинг-гормон лютеинизирующего гормона.

Ингибиторы АКФ различаются по силе и избирательности связывания с активными центрами в молекуле соматической формы АКФ: каптоприл имеет сродство к N-домену, лизиноприл к C-домену, трандолаприл к обоим.

В микрососудах АПФ располагается на мембранах клеток. Этот фермент находится в адвентиции крупных сосудов в связи с vasa vasorum. Циркулирующие молекулы АПФ попадают в кровь, отделяясь от тканевых гликопротеидов. Важнейшая роль лёгких в превращении АI в АII обусловлена богатой их васкуляризацией и тем, что вне лёгких АII не подвергается инактивации.

Физиологические эффекты А-II, опосредованные АТ1 и АТ2 рецепторами

АТ1-рецепторы

АТ2-рецепторы

-         Вазоконстрикция;

-         Стимуляция синтеза и секреции альдостерона;

-         Реабсорбция натрия в почечных канальцах;

-         Гипертрофия кардиомиоцитов;

-         Пролиферация гладкомышечных клеток сосудов;

-         Усиление периферического действия норадреналина;

-         Усиление активности центральных звеньев САС;

-         Усиление высвобождения вазопрессина;

-         Снижение почечного кровотока;

-         Торможение секреции ренина.

-         Стимуляция апоптоза;

-         Антипролиферативный эффект;

-         Дифференцировка и развитие эмбриональных тканей;

-         Снижение пролиферации клеток эндотелия;

-         Вазодилятация.

Все известные физиологические сердечно-сосудистые и нейроэндокринные эффекты АII опосредованы АТ1-рецептор. Все они способствуют повышению АД, развитие гипертрофии левого желудочка, утолщение стенок артериол, что способствует уменьшению их просвета. Эффекты АII, которые опосредуют АТ2 рецепторы – вазодилятация и торможение пролиферации клеток, в том числе кардиомиоцитов, гладкомышечных клеток. Таким образом, через АТ2-рецепторы АТII частично ослабляет свои эффекты.

АТ1-рецепторы на мембранах гепатоцитов и клетках ЮГА почек опосредуют механизмы обратной отрицательной связи в РААС. Поэтому в условиях блокады АТ1-рецепторов в результате нарушения этих механизмов обратной отрицательной связи увеличивается синтез ангиотензиногена печенью и секреция ренина клетками ЮГА. То есть при блокаде АТ1-рецепторов происходит реактивная активация РААС, которая проявляется повышением уровня ангиотензиногена, ренина, АТ-I и АТ-II. Повышение образования АТ-II в условиях блокады АТ1-рецепторов приводит к тому, что преобладают эффекты стимуляции АТ1-рецепторов.

3-й механизм антигипертензивного действия блокаторов АТ1-рецепторов объясняется повышением образования ангиотензина (I-7), обладающего вазодилятирующими свойствами – он образуется из А-I под действием нейтральной эндопептидазы или из А-II под действием пролиловой эндопептидазы. АТ (I-7) обладает помимо вазодилятирующего, натрийуретическим свойствами, которое опосредуется простагландинами, простацилинами, кининами, эндотелиальным релаксирующим фактором. Эти эффекты обусловлены воздействием на АТх.

Влияние АТ-II на функцию и структуру клетки

УВЕЛИЧЕНИЕ ОПСС

УВЕЛИЧЕНИЕ ОЦП

Сердце:

Ø       Инотропное действие;

Ø       Коронарная констрикция;

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.