2.2.3 Генетико - статистические методы анализа
Распределение генотипов по исследованным полиморфным локусам проверяли на соответствие равновесию Харди-Вайнберга (РХВ) с помощью точного теста Фишера [Вейр Б., 1995]. Рассчитывали ожидаемую гетерозиготность полиморфизма генов NRAMP1, IL12B, VDR, IL1B, IL1RN [Nei M., 1975]. Относительное отклонение ожидаемой гетерозиготности от наблюдаемой (D) рассчитывали по формуле:
D=(hobs-hexp)/hexp,
где hobs и hexp - ожидаемая и наблюдаемая гетерозиготность соответственно.
Для анализа ассоциации маркеров исследуемых генов с туберкулезом, а также с качественными патогенетически важными признаками заболевания, сравнивали частоты аллелей и генотипов в группах больных и здоровых индивидов, используя критерий χ2 с поправкой Йетса на непрерывность. При численностях генотипов менее пяти использовали точный тест Фишера. В дополнение к этому об ассоциации разных генотипов (или их комбинаций) с заболеванием судили по величине отношения шансов (odds ratio (OR)), которая показывает, во сколько раз выше вероятность заболеть для индивида с определенным генотипом (или комбинацией генотипов) [Pearce N., 1993].
OR= (A/B)/(C/D), где
А - число (процент) людей с данным генотипом (комбинацией генотипов) в группе больных;
С - число (процент) людей с данным генотипом (комбинацией генотипов) в группе здоровых;
В - число (процент) индивидов, не имеющих данного генотипа (комбинации генотипов) в группе больных;
D - число (процент) индивидов, не имеющих данного генотипа (комбинации генотипов) в группе здоровых.
Значения OR>1 указывают на возможную положительную ассоциацию с заболеванием. Обсуждение величин OR проводили при уровне значимости не более 5%.
На материале семейной выборки больных изучение ассоциаций полиморфизма исследованных генов с туберкулезом проводили с использованием теста на неравновесие при переносе (Transmission/Disequilibrium Test, TDT), который в случае диаллельного маркерного локуса М сводится к анализу таблицы сопряженности 2´2, где в ячейках матрицы суммированы случаи наследования и не наследования от родителей больными детьми маркерных аллелей [Spielman R. S. et al., 1993].
a - число случаев наследования аллеля М1 от родителей М1М1;
b - число случаев наследования аллеля М1 от родителей М1М2;
c - число случаев наследования аллеля М2 от родителей М1М2;
d - число случаев наследования аллеля М2 от родителей М2М2;
Используются данные только от гетерозиготных родителей. Статистика теста рассчитывается по формуле:
TDT=(b-c)2/(b+c)
и в случае верной нулевой гипотезы (Н0: нет ассоциации) асимптотически распределена как χ2 с 1 степенью свободы.
С целью выявления ассоциации маркеров исследуемых генов с количественными, патогенетически важными признаками туберкулеза, проводили сравнение средних значений уровней метрических показателей у носителей разных генотипов с помощью однофакторного дисперсионного анализа по Фишеру и теста LSD. При наличии зависимости признака от пола показатели анализировались отдельно в группе мужчин и женщин. В случае влияния возраста на количественный параметр проводилась его корректировка, которая осуществлялась с помощью уровня линейной регрессии и рассчитывалась по формуле [Лильин Е.Т. и др., 1984]:
y=x+b(t0 -t),
где y - коррегированное значение исходной величины (х) признака;
t - возраст индивида
t0 - определенный возраст, к которому приводятся все значения;
b - коэффициент линейной регрессии признака по возрасту, который рассчитывается по формуле:
b=rxt/st2
где rxt - коэффициент корреляции признака с возрастом;
st - стандартное отклонение возраста в выборке.
Проверку на нормальность распределений осуществляли с помощью критерия Колмогорова-Смирнова и Лилифорса. В случае неравных дисперсий использовали непараметрические тесты Манна-Уитни, Краскела-Уоллиса и медианный тест [Лакин Г.Ф., 1990]. Сравнение дисперсий проводили по критерию Левене.
Расчеты гаметического неравновесия между парами молекулярно-генетических маркеров проводили по Hill W. G. (1974). Все расчеты осуществляли с помощью программ "STATISTICA for Windows 6.0" и "Microsoft Excel 7.0".
3. Результаты и обсуждение
Учитывая поставленные задачи, исследование включало три аспекта: изучение популяционной распространенности полиморфизма генов NRAMP1, IL12B, VDR, IL1B, IL1RN, анализ связи исследованных генов с туберкулезом и поиск ассоциаций с патогенетически важными параметрами заболевания у русских жителей г. Томска. К настоящему времени получены результаты исследования аллельных вариантов генов подверженности к ТБ у тувинцев, выполненного по аналогичной схеме и с использованием того же набора полиморфизма генов [Рудко А.А. и др., 2003]. Это дало возможность провести сравнение полученных результатов между русскими жителями г. Томска и тувинцами.
3.1 Распространенность полиморфизма генов NRAMP1, IL12B, VDR, IL1B, IL1RN среди здоровых лиц (контрольная группа)
В настоящее время во многих популяциях мира достаточно широко исследованы полиморфные варианты гена NRAMP1, и в меньшей степени изучена распространенность аллелей генов VDR, IL12B, IL1B, IL1RN [Рудко А.А. и др., 2003; Имангулова М.М. и др., 2004; Bellamy R. et al., 1998; Ryu S. et al., 2000; Cervino A.C.L. et al., 2000;. Gao P. S., 2000; Baghdadi J. et al., 2004; Liu W. et al., 2004;]. Результаты исследований показали, что полиморфизм этих генов вносит вклад в возникновение туберкулеза.
Однако известно, что восприимчивость к инфекционному заболеванию определяется одновременно многими генами с различным вкладом каждого из них в формирование того или иного патологического фенотипа. К тому же, один и тот же ген может участвовать в формировании чувствительности (или резистентности) к нескольким инфекционным заболеваниям. Вероятно, для каждого гена (и их ансамблей) существует свое "поле действия", которое модифицируется средой [Пузырев В.П., 2000]. Сочетания генов предрасположенности к болезни могут быть неодинаковы в популяциях, обусловливая различия в подверженности к заболеванию у разных народов. В связи с этим перспективным направлением исследований генетических основ предрасположенности к туберкулезу является изучение вкладов конкретных сочетаний аллелей в подверженность к болезни в различающихся как по расовой, так и по этнической принадлежности популяциях.
У здоровых жителей г. Томска распределение генотипов по всем изученным полиморфным вариантам гена NRAMP1 (469+14G/C, D543N, 1465-85 G/A, 274 C/T), VDR (B/b, F/f), а также генов интерлейкинов (полиморфизм 1188A/C гена IL12B, полиморфизм +3953 A1/A2 гена IL1B) соответствовало ожидаемому при равновесии Харди-Вайнберга (РХВ), причем для большинства полиморфизмов наблюдаемая гетерозиготность (Hobs) превышала ожидаемую (Hexp) (табл.6). Лишь для частот генотипов VNTR полиморфизма гена IL1RN показано отклонение от ожидаемых при РХВ (χ2=16,75 р=0,010). При этом наблюдаемое количество гомозигот А2А2 превышало ожидаемое в 2,5 раза, а уровень гетерозиготности был меньше ожидаемого (D= -0,280). Возможно, этот факт объясняется тем, что анализируемая популяционная группа индивидов была выбрана не случайным образом из общей популяции, а включала только здоровых в отношении туберкулезной инфекции.
Сравнение распространенности полиморфизма генов NRAMP1, IL12B, VDR, IL1B, IL1RN у здоровых от туберкулеза русских и тувинцев показало статистически значимые отличия между этими этническими группами, которые имели место в распределении, как частот аллелей, так и генотипов по большинству изученных генов (табл. 7). Максимальные отличия между сравниваемыми этническими группами выявлены для полиморфизма B/b гена VDR, VNTR полиморфизма гена IL1RN и 1188А/С гена IL12B.
Таблица 6 Частоты аллелей и генотипов исследованных генов у здоровых жителей г. Томска
Ген
Поли-морфизм
Гено-типы
N.O.
N.E.
Частота аллеля
χ2 (df)
Hobs
Hexp
D
NRAMP1
469+14 G/C
GG GC CC
97 38 2
98,22 35,56 3,22
G= 0,847
0,44 (1)
0,277
0,260
+0,069
D543N
DD DN NN
127 12 0
127,26 11,48 0,26
D= 0,957
0,01 (1)
0,086
0,083
+0,045
1465-85 G/A
GG GA AA
73 47 15
68,98 55,04 10,98
G= 0,715
2,60 (1)
0,348
0,408
-0,146
274C/T
CC CT TT
80 34 2
81,11 31,78 3,11
C= 0,836
0,37 (1)
0,293
0,274
+0,070
IL12B
1188 A/C
AA AC CC
85 43 1
87,92 37,15 3,92
A= 0,826
2,75 (1)
0,333
0,288
+0,157
VDR
B/b
BB Bb bb
19 63 26
23,61 53,77 30,61
b= 0,532
2,93 (1)
0,583
0,498
+0,172
F/f
FF Ff ff
42 54 17
42,13 53,73 17,13
F= 0,611
0,00 (1)
0,478
0,476
+0,005
IL1B
+3953 A1/A2
A1A1 A1A2 A2A2
90 44 5
90,24 43,51 5,24
A1= 0,806
0,317
0,313
+0,011
IL1RN
VNTR
A1A1 A1A2 A1A3 A1A4 A2A2 другие
93 27 4 3 12 1
86,49 40,94 3,96 2,20 4,84 1,57
A1= 0,786 A2= 0,186 A3= 0,018
16,8* (6)
0,250
0,347
-0,280
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20