Линзы пролонгированного режима ношения (extended wear) теоретически можно носить, не снимая на ночь в течение нескольких дней подряд. После этого их обязательно надо снять и дать глазам отдохнуть. Как правило, на такой режим можно переводить пациентов, имеющих опыт дневного ношения линз [25]. Следует рекомендовать таким пациентам регулярные консультации у офтальмолога в первое время после перехода на такой режим. Пролонгированный режим ношения ведет к значительному увеличению риска возникновения осложнений.
Гибкий режим ношения (flexible wear) означает, что пациент иногда может не снимать линзы на одну или даже две ночи. Для линз дневного ношения используется материал, как с высокой, так и с низкой кислородной проницаемостью. Для пролонгированного и гибкого режимов ношения рекомендуют только линзы с высоким Dk/L (высокий Dk и/или тонкий дизайн).
Режим постоянного (перманентного) ношения возможен для линз с Dk больше 100, при этом режиме линзы рекомендуют носить не снимая в течение 1 месяца [15].
Применение МКЛ
Контактные линзы в течение длительного времени служили, главным образом, средством оптической коррекции зрения. Линзы стали использоваться в лечении некоторых заболеваний глаза в качестве искусственной повязки для роговицы и средства введения лекарственных веществ в глаз [20]. Однако, если применение МКЛ с бандажной целью уже вошло в практику офтальмологов, то вопросы, связанные с введением лекарственных веществ в глаз с помощью линз, находится в стадии разработки. Известно, что МКЛ, пропитанные лекарственными веществами, продлевают их лечебное действие и вследствие этого являются более эффективным методом введения препаратов в орган зрения по сравнению с инстилляционным [15].
Для изготовления МКЛ применяются полимерные материалы на основе гидрогелей. Благодаря свойствам гидрогелей, обеспечивающим диффузию электролитов, кислорода и углекислого газа, мягкие линзы в меньшей степени, чем жесткие, влияют на метаболизм роговицы. Это дает возможность использовать их при заболеваниях роговицы с целью ее защиты [20]. Сорбционно-десорбционные свойства гидрофильных материалов обуславливают применение линз, изготовленных из них, в качестве резервуара лекарственных препаратов, вводимых в глаз. Кислородная проницаемость и пропускаемость являются сложными процессами и в существенной степени зависят от содержания воды в материале, конструкции линз, температуры и типа мономера. Слезная пленка является основным поставщиком питательных веществ - кислорода, глюкозы, солей и минеральных веществ в роговицу. Кислород из воздуха содержится в слезной пленке в растворенном состоянии. Без контактных линз в открытые глаза может поступать до 21% всего кислорода воздуха. При закрытых глазах и без линз (во время сна) количество кислорода снижается до 7% [15]. Контактные линзы значительно затрудняют проникновения кислорода в глаз. При закрытых глазах, например во время сна с контактными линзами для длительного ношения, процессы жизнедеятельности в роговице могут снизиться. Подбирая линзы, врачи обычно отдают предпочтение линзам, при ношении которых кислородоснабжение во время сна максимально. В целом, проницаемость линз для кислорода тем выше, чем больше воды они содержат и чем они тоньше [20]. Все мягкие материалы для контактных линз за исключением новых линз, кремнийорганических компоненты, обладают способностью поглощать воду. В соответствии с долей содержащейся воды материалы для контактных линз разделяют на 3 категории: с низким содержанием воды - 35-45%; со средним содержанием воды - 45-60% и с высоким содержанием воды - 65-90% [15].
Применение МКЛ при лечении больных с различными повреждениями и заболеваниями глаз[18]:
· термические ожоги. Цель: снятие болевого синдрома, профилактика инфекционных осложнений;
· химические ожоги, комбинированные термо - механические поражения. Цель: снятие болевого синдрома, профилактика инфекционных осложнений;
· непротяженные раны роговицы с адаптированными краями. Цель: бандаж, профилактика инфекционных осложнений;
· протяженные и многолоскутные раны роговицы (после наложения узловых швов). Цель: устранение раздражения, вызванного узловыми швами, герметизация передней камеры, профилактика инфекционных осложнений;
· состояние после сквозной кератопластики. Цель: иммобилизация трансплонтанта, герметизация передней камеры;
· эпителиально-эндотелиальная дистрофия роговицы. Цель: перевод отечной стадии в сухую, снятие болевого синдрома.
В проблемной научно-исследовательской лаборатории высокомолекулярных соединений КемГУ создан материал «Кемерон-1», который обладает наряду с хорошими оптическими свойствами: прозрачность, стабильность показателя преломления, обладает гибкостью, эластичностью, биологической инертностью и применяется для изготовления мягких контактных линз, используемых в бандажных целях [4]. Материал «Кемерон-1» – это сополимер винилпирролидона с метилметакрилатом (сшивающий агент: дивиниловый эфир диэтиленгликоля):
«Кемерон-1» – твердый стеклоподобный материал, после набухания становится эластичным и гибким. В последнее время начаты исследования транспортных свойств линз из Кемерон-1 по отношению к препаратам глазных капель [4]. Возможность применения МКЛ в качестве средства для введения лекарственных веществ в орган зрения зависит от абсорбции (поглощения) данного вещества материалом линзы и последующей десорбции.
3.1 Характеристика объекта исследования
Объектом исследования в данной работе являются откалиброванные мягкие контактные линзы из материала «Кемерон». В исходном состоянии линзы – жесткие полимеры, они негибкие и достаточно ломкие. При попадании в воду полимер поглощает ее, тем самым линзы становятся мягким и гибким. У набухшей линзы увеличивается ее масса и объем. Такая линза хранится в водном растворе.
Для исследования обменных свойств мягких контактных линз был взят препарат «Ципромед», содержащий 0,3% гидрохлорида ципрофлоксацина, эквивалентного ципрофлоксацину. Этот препарат был выбран нами, потому что последнее время довольно часто применяется для лечения органа зрения, не содержит веществ, которые бы помешали анализу, отпускается без рецепта врача.
3.2 Реактивы и аппаратура, используемая в работе
Характеристики исходных веществ:
1. Глазные капли «Ципромед»
(содержание активного компонента ципрофлоксацина C17H18FN3O3 0,3 %).
2. Гидрохлорид ципрофлоксацина (1-циклопропил-6-фтор-1,4-дигидро-4-оксо-7-(1-пиперазинил)-3-хинолин карбоновой кислоты моногидрохлорид моногидрат), с эмпирической формулой: C17H18FN3O3 HCl H2O.
Структурная формула:
Молекулярная масса: 385,82
3. Кислота соляная, фиксанал по ТУ 2642-001-49415344-99.
4. Натрия хлорид, раствор изотонический 0,9% (производитель: ОАО «БИОХИМИК», Р.№002134/01-2003).
5. Бидистиллированная вода
Характеристики используемой аппаратуры:
1. Спектрофотометр СФ-26, оснащенный цифровым вольтметром Ш1312Технические данные:
а) спектральный диапазон, от 186 до 1110
б) относительное отверстие монохроматора 1:11
в) диапазон измерений коэффициента пропускания, от 3 до 100
г) основная погрешность измерения коэффициента
пропускания, % абс Не более 1
д) основная погрешность градуировки шкалы длин волн в области 400 – 550 нм, нм не более 0.5.
2. Колбы объемом 2000 мл, 100 мл, 50 мл.
3. Пипетки объемом 1 – 10 мл.
4. Стаканчики
5. Воронки
6. Набор кювет с l = 1 см для фотометрирования.
3.3 Методика обработки результатов
Уравнение линейного градуировочного графика получают методом наименьших квадратов, позволяющим вычислить коэффициенты a и b в уравнении: y = a +bx
b = ;
a =
Оценивают точность параметров a и b, для этого оценивают дисперсию S2yx экспериментальных точек:
S2yx (n – 2) =
Дисперсию констант a и b вычисляют по уравнениям:
S2b = ;
S2a =
Зная дисперсии констант a и b, можно рассчитать доверительные интервалы:
= ;
=
Окончательный вид уравнения прямой:
y = (a) + (b)x
Вычисление метрологических характеристик, результатов анализа:
xан = ;
Sx =
Доверительный интервал результата анализа:
Предел обнаружения (xmin):
;
xmin = Cmin =
3.4 Методики проведения эксперимента
За основу была взята методика, описанная в разделе 2.5.3., с некоторыми изменениями.
1 мл испытуемого раствора вносили в стандартную мерную колбу объемом 50 мл, разбавляли до полного объема 0,1 М хлористоводородной кислотой (раствор А). Затем 2 мл полученного раствора переносили в мерную колбу объемом 50 мл и доводили до метки 0,1 М хлористоводородной кислотой (раствор В). Снимали показания поглощения в ячейке l = 1 см при длине волны 277 нм против 0,1 М HCl в качестве раствора сравнения.
Массу ципрофлоксацина находили по формуле:
m = cан×K×V×10-3, мг (3.1)
сан – концентрация ципрофлоксацина в растворе, установленная по уравнению градуировочной зависимости, мкг/мл;
К – коэффициент разбавления;
V – фиксированный объем раствора ципрофлоксацина, мл;
Построение градуировочной зависимости
Методика приготовления первичного стандарта для построения градуировочной зависимости
Точную навеску массой 0,0350 г порошка ципрофлоксацина растворяют в 10 мл воды (вода бидистиллированная). Полученный раствор хранят в темном и холодном месте.
Опираясь на имеющуюся методику 3.4.1, градуировочную зависимость получали следующим образом. В колбу объемом 100 мл вносили первичный стандарт и доводили до метки 0,1 М хлористоводородной кислотой (раствор А). Растворы для фотометрирования готовили сериями. В мерные колбы объемом 50 мл вносили разные по объему (от 0,5 до 12 мл) аликвоты раствора А. После этого растворы доводились до метки 0,1 М хлористоводородной кислотой, тщательно перемешивались и фотометрировались относительно раствора сравнения (0,1 М хлористоводородная кислота) при длине волны 277 нм. Градуировочная зависимость была построена в интервале концентраций от 9,00*10-7 моль/л до 2,17*10-5 моль/л (0,3 мкг/мл до 7,2 мкг/мл).
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10