Рефераты. Изучение обменных свойств мягких контактных линз по отношению к ципрофлоксацину

Для увеличения содержания воды к НЕМА добавляют различные мономеры. Например, метакриловую кислоту, винилпиролидон и акриламид [1]. Различные полимеры, полученные на основе НЕМА, отличаются включенными в состав полимера мономерами, продуктами, используемыми для поперечных сшивок, и другими химическими агентами, добавляемыми в структуру полимера. Все эти продукты влияют на содержание воды, электрический заряд и другие физические свойства полимеров [26]. Примером материала, изготовленного на основе НЕМА, является тетрафилкон (используемый, например, CooperVision Inc. в линзе Cooper Clear), состоящий из мономеров НЕМА, N-винилпиролидона (NVP) и метилметакрилата (ММА), сшитых с помощью дивинилбензола (DVB).

Примерами не-НЕМА материалов являются крофилкон А, лидофилкон А, атлафилкон А и нетрафилкон А. (Отметим, что суффикс "филкон" в названиях материалов указывает на то, что полимеры являются гидрофильными, т.е. содержат гидрофильные группы, которые активно притягивают молекулы воды) [19].

Крофилкон А - это сополимер ММА и глицерилметакрилата (GMA). В отличие от НЕМА крофилкон имеет одну дополнительную гидроксильную группу, и это обеспечивает содержание воды 38,5%. Крофилкон - более жесткий и устойчивый к отложениям, чем полимеры на основе НЕМА. Лидофилкон А и В - сополимеры ММА и NVP [26]. Они содержат 70% и 79% воды, соответственно, а благодаря включению ММА они достаточно прочные и долго служат. Атлафилкон А - единственный не-НЕМА материал, который содержит поливиниловый спирт в качестве основного ингредиента. Атлафилкон - неионный материал, устойчивый к отложению белков, с содержанием воды 64%. Нетрафилкон А - неионный не-НЕМА материал с 65% воды, также устойчивый к отложению белков [18].

Последнее пополнение полимеров, применяемых для изготовления линз непрерывного ношения способно растворять кислорода больше, чем его растворяет вода и обеспечивает кислородопроницаемость больше 100 ед.

Строение гидрогелей

Гидрогели представляют собой поперечно сшитые полимеры. В своем исходном состоянии до гидратации они похожи на жесткие полимеры - негибкие, ломкие и жесткие [21]. При погружении в воду гидроксильные группы сухого полимера притягивают молекулы воды, и полимер поглощает воду. Объем поглощенной воды зависит от количества гидроксильных компонентов в его структуре [20]. При насыщении водой полимер становится мягким и гибким.

Гидрогели имеют аморфное строение. Структура гидрогеля пронизана многочисленными порами, размеры и число которых у разных материалов сильно отличаются [15]. Однако размеры пор (0,5-3,5 мкм) слишком малы для проникновения микроорганизмов, если структура полимера не повреждена. В то же время многие ионы, консервирующие вещества и растворимые в воде препараты типа стероидов и антибиотиков могут с легкостью диффундировать как в гидрогель, так и в обратном направлении [25].


2.6.2 Свойства мягких контактных линз

Содержание воды

Содержание воды в контактной линзе является одним из главных параметров МКЛ. Высокое содержание воды обеспечивает комфортность ношения линзы и снабжение роговицы кислородом. Содержание воды в контактной линзе (СW) определяется как отношение веса воды в линзе (РW) к полному весу насыщенной водой линзы (РL) в процентах:

CW=(PW/PL)x100%

Вода обеспечивает продвижение кислорода через материал гидрогельной линзы. Молекулы кислорода растворяются в воде и перемещаются через материал линзы к роговице [20]. Кислородная проницаемость критична для мягких контактных линз, так как слезный насос недостаточно эффективен для обеспечения роговицы кислородом. Большая часть необходимого роговице кислорода поступает сквозь линзу.

Как указывалось выше, существуют материалы, которые растворяют кислород больше, чем вода, содержание воды в этом случае будет не критично [20].

Кислородная проницаемость

Для характеристики кислородной проницаемости материала (но не конкретной линзы определенной толщины) используется коэффициент кислородной проницаемости (Dk) [20]. (Здесь D - коэффициент диффузии, k - коэффициент растворимости. В практике врача эти параметры по отдельности практически не встречаются.) Кислородная проницаемость материала прямо пропорциональна содержанию в нем воды и не зависит от толщины материала. Для характеристики способности конкретной линзы пропускать кислород используется коэффициент пропускания кислорода - Dk/L, где L - толщина линзы (обычно берется толщина линзы в центре). Этот коэффициент уже является характеристикой конкретной линзы и зависит, в частности, от ее толщины. Например, контактные линзы для коррекции сильно выраженной миопии, будучи очень тонкими в центральной зоне, позволяют кислороду легко проникать через них (Dk/L будет большим) [25]. С другой стороны, линзы для коррекции афакии очень толстые в центре и плохо пропускают кислород (Dk/L будет низким).

При снижении содержания воды происходит соответствующее снижение Dk/L. При этом могут изменяться и другие параметры линзы, что может повлиять на посадку линз. Снижение содержания воды на 20% приводит к снижению кислородной проницаемости приблизительно в 2 раза [20].

Чем тоньше линза, тем больше она пропускает кислород. Но следует иметь в виду, что ультратонкая линза вызывает дегидратирование глаза (обезвоживание роговицы).

Отметим, что производители линз обычно указывают коэффициент кислородной проницаемости (Dk) и толщину линзы в центре для линз оптической силы -3,00 D. Например, полимакон имеет Dk = 7,3х10"" (размерность единицы измерения Dk выражается довольно сложным образом) [20]. Контактные линзы, изготовленные из полимакона, будут иметь различные значения Dk/L в зависимости от их толщины. Небольшие отличия в значениях Dk, встречающиеся в различных источниках для одного и того же материала, могут объясняться небольшой разницей в содержании воды, технологическими тонкостями процесса изготовления и особенностями методики определения Dk [25].

Электрический заряд

Материалы, из которых делают контактные линзы, могут нести электрический заряд или быть электрически нейтральными. Это свойство особенно важно для мягких контактных линз, так как оно влияет на такие факторы, как совместимость с растворами и образование отложений на поверхности линз. Материалы, несущие значительный электрический заряд из-за наличия в них электрически заряженных химических групп, называют ионными. Электрически нейтральные материалы относят к неионным [20].

Типичными неионными материалами являются полимеры, изготовленные на основе мономеров НЕМА (например, полимакон), метилметакрилата или NVP (N-винилпиролидон).

Для изготовления более качественных МКЛ ведутся постоянные поиски новых материалов с более высоким содержанием воды, повышенной кислородной проницаемостью, увеличенной прочностью [25].

В некоторые НЕМА-линзы для повышения содержания воды в структуру полимера включают метакриловую кислоту (МА). Мономер МА обладает высокой гидрофильностью и его включение может значительно повысить влагосодержание линз по сравнению с линзами из чистого НЕМА. Материалы с МА относят к группе ионных полимеров, так как они несут отрицательные заряды. Кроме МА в ионных материалах применяют также карбоксиловую и акриловую кислоты [20].

Наличие отрицательного заряда делает материалы химически более активными, особенно в растворах с кислым рН. Кроме этого, ионный заряд делает материал более восприимчивым к образованию поверхностных отложений. Многие слезные образования положительно заряжены и притягиваются отрицательно заряженной поверхностью линзы [20].

Неионные материалы электрически нейтральны. Они более инертны, в меньшей степени вступают в реакцию с продуктами слезы и поэтому более устойчивы к поверхностным отложениям [25].


2.6.3 Классификация материалов мягких контактных линз

В 1986 Федеральная комиссия США по лекарственным препаратам и пищевым добавкам (FDA) и производители мягких контактных линз предложили классификацию мягких контактных линз в соответствии с содержанием воды и электрическим зарядом материала [20]:

Группа 1: Линзы из неионного материала с низким содержанием воды.

Группа 2: Линзы из неионного материала с высоким содержанием воды.

Группа 3: Линзы из ионного материала с низким содержанием воды.

Группа 4: Линзы из ионного материала с высоким содержанием воды.


Рис. 2.2. Мягкие контактные линзы и материалы для их изготовления.


Линзы из материала с низким содержанием воды содержат 35-50% воды. Это обычные линзы дневного ношения стандартной толщины. Но если их сделать очень тонкими, то они могут быть использованы и для пролонгированного режима ношения [25].

Линзы с высоким содержанием воды имеют гидрофильность в диапазоне от 51% до 80%. У них высокая кислородопроницаемость. МКЛ с высоким содержанием воды обычно делают из материала, содержащего в качестве сополимера NVP (N-винилпиролидон) [20].

У большинства современных МКЛ кислородопроницаемость определяется в большей степени уровнем гидратации, чем природой полимерной структуры. Главным недостатком высокогидрофильных линз является их высокая чувствительность к механическим повреждениям по сравнению с линзами со средним содержанием воды [21]. Высокогидрофильные линзы, если сделать слишком тонкими, могут даже вызывать повреждение эпителия роговицы из-за его обезвоживания in situ.

Более подробно с описанием групп можно ознакомиться в приложении 4.


2.6.4 Применение мягких контактных линз

Методы изготовления мягких контактных линз

В настоящее время для изготовления МКЛ используют методы центробежного формования (spin casting), точения (lathe cutting), литья (cast molding), а также методы, представляющие собой комбинации перечисленных методов (например, Реверсивный процесс III) [25].

Более подробно с этим можно ознакомиться в Приложении 5.

Частота замены и режимы ношения

Планово сменяемые линзы (planned replacement/frequent replacement lenses) предназначены для ношения со сменой через определенный период времени с целью уменьшения накопления на поверхности линзы загрязняющих отложений. Они могут быть использованы по графику дневного или пролонгированного режимов ношения в зависимости от потребностей пациента. Интервал замены линз зависит от режима ношения и может изменяться от 2-4 недель до 6 месяцев [20].

Под линзами частой плановой замены (disposable lenses) понимают линзы, строго говоря, одноразового использования. Согласно классификации FDA, линзы частой плановой замены рекомендуются только для однократного ношения и после снятия их выбрасывают. На практике длительность использования таких линз может изменяться от 1 дня (линзы однодневного использования/daily disposable lenses) до 2 недель (при дневном ношении) или только 1 недели (при пролонгированном ношении) [25]. Такой 1-2-хнедельный срок замены рекомендован, например, для линз Focus 1-2 week Visitint (CIBA) и Acuvue (Vistakon) [20].

Иногда к линзам частой плановой замены относят линзы дневного ношения сменяемые через 2 недели. Правильнее в этом случае говорить о планово сменяемых линзах с заменой через 2 недели, так как линзы частой плановой замены всегда предполагают возможность их непрерывного ношения в течение, хотя бы, одних суток [21].

В целом, следует отметить, что даже в различных учебных материалах, выпускаемых известной американской организацией CLAO (Contact Lens Association of Ophthalmologists), не имеется единого мнения, какие линзы следует называть disposable, а какие planned replacement (или-frequent replacement).

Линзы дневного режима ношения носят в течение дня и на ночь обязательно снимают [20].

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.