Так как функция y=cosx периодична с периодом 2, то достаточно построить ее график на каком-нибудь промежутке длиной 2. Кроме того достаточно построить ее график на отрезке 0х, а затем симметрично отразить относительно оси Оу. Прежде чем перейти к построению графика, доказывается, что функция y=cosx убывает на отрезке 0х. Доказанное здесь свойство позволяет сделать вывод о возможности построения графика функции на этом отрезке и распространении его на всю числовую прямую.
После построения формулируются основные свойства функции y=cosx.
В §20 вводится функция y=sinx. Для построения функции используют формулу:
.
Эта формула показывает, что график функции y=sinx можно получить сдвигом графика функции y=cosx вдоль оси абсцисс вправо на
Затем формулируются свойства функции y=sinx.
В §21 изучается функция y=tgx.
Построение графика функции тангенс, как и косинус, начинается с исследования. Сначала график строится на промежутке , а затем распространяется на всю числовую прямую. Для этого доказывается, что функция y=tgx возрастает на промежутке . Доказанное здесь свойство позволяет сделать вывод о возможности построения графика функции на всю числовую прямую.
После чего формулируются свойства функции y=tgx.
В учебнике Колмогорова все тригонометрические функции вводятся в одном параграфе, который начинается с основных тригонометрических определений. Данные определения не являются новыми для учеников - это повторение материала 9 класса. После этого происходит построение графика функции y=sinx по точкам с использованием свойств периодичности и единичной окружности.
По графику демонстрируются свойства данной функции: ее область определения, область значения, наибольшее и наименьшее значения, нули функции, промежутки постоянных знаков функции. Аналогично рассматриваются свойства функции y=cosx и y=tgx и на графиках этих функций демонстрируются их свойства.
В 9 классе в учебнике Мордковича предлагаются элементы теории тригонометрических функций. Эта глава рассматривается, как дополнительный материал. Весь этот материал повторен и расширен в курсе алгебры и начала анализа в 10-11 классе.
В начале 10 класса учащиеся подробно изучают данный материал. На изучение данного материала отводится 15 параграфов, а по времени - 18 часов.
В §1 и в §2 учащиеся знакомятся с числовой окружностью и с определением тригонометрических функций. Автор выделяет числовую окружность в качестве самостоятельного объекта изучения. Школьникам напоминается материал о вычислении длин дуг окружностей.
Числовая окружность на плоскости рассматривается в §3.
Для изучения числовой окружности автор предлагает игровые моменты.
Изучение самих функций начинается только с 9 параграфа. Перед этим вводятся определения синуса, косинуса , тангенса и котангенса. Первой функцией предлагается y=sinx. Параграф начинается с формулирования свойств функции. После чего предлагается построить график данной функции на отрезке [0; . Затем добавляют к построенному графику симметричную ему относительно начала координат линию. Получили график на отрезке [; . Далее предлагается построить график функции на отрезке [; 3. В результате получили то же самое, что и на отрезке [; .
В следующем параграфе предлагается к рассмотрению функцию y=cosx. Ее график получается из графика функции y=sinx сдвигом на в лево. После чего рассматриваются свойства функции.
В §15 учащимся предлагается функция y=tgx и y=сtgx. Отмечаются их свойства. Графики строятся так же как в учебниках Алимова.
Глава III. Вспомогательные приемы построения усложненных графиков.
Известно, что методы высшей математики позволяют строить любой график. Однако знаний тех элементов высшей математики, которые даются в средней школе, для этой цели недостаточно. С другой стороны, большое количество графиков, иногда весьма интересных может быть построено средствами исключительно элементарной математики. Наиболее трудные из этих графиков требуют для своего построения хорошего знания многих разделов элементарной математики, а подчас и остроумного применения этих знаний. Построение графиков средствами элементарной математики может служить материалом для закрепления и усовершенствования учениками и абитуриентами своих знаний по многим важным разделам элементарной математики.
§3.1. Параллельный перенос.
п 3.1.1 Сдвиг оси х-ов.
Рис 19 Рис 20
Например, для построения графика функции y=f(x+3) вертикальная ось графика функции f(x) сдвигается на 3 единицы вправо, т. е. на (+3); для построения графика функции y=f(x-3) вертикальная ось сдвигается на 3 единицы влево, т. е. на (-3).
Примечание. 1. Необходимо иметь в виду, что сдвиг оси у-ов надо производить на величину «добавка» к положительному значению аргумента х, так что если задана функция y = f(-х+а), то ее надо сначала преобразовать в функцию y=f[-(х-а)] и принять за исходную функциюf(-х), а затем сдвинуть ось у-ов на (-а), т. е. на добавок к (+x).
Пример. у=(-х+1)2.
Преобразуем: у=[-(x-l)]2=(x-1)2.
Приняв за исходную функцию у=х2, как и при построении графика функции у=(х+1)2 (рис. 19), сдвигаем ось у-ов на (-1), т. е. на добавок к (+х) (рис. 21), а не на (+1), как на рисунке 19.
Для построения графика функции у=(-х+1)3 следует, преобразовав ее в функцию у=[-(х-1)]3, принять за исходный график заданной функции у=(-х)3=-х3 и сдвинуть ось у-ов на (-1).
Примечание 2. Если требуется построить график функции у=f(x+а)+b (рис. 22), то сначала строится график функции у=f(х), причем обе оси наносятся штриховыми линиями. Затем горизонтальная ось сдвигается на (-b), т.е. в сторону, обратную знаку добавка к функции, вертикальная ось сдвигается на (+а), т.е. в сторону знака добавка к аргументу.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11