Рефераты. Диалектика развития понятия функции в школьном курсе математики

Так как функция y=cosx периодична с периодом 2, то достаточно построить ее график на каком-нибудь промежутке длиной 2. Кроме того достаточно построить ее график на отрезке 0х, а затем симметрично отразить относительно оси Оу. Прежде чем перейти к построению графика, доказывается, что функция y=cosx убывает на отрезке 0х. Доказанное здесь свойство позволяет сделать вывод о возможности построения графика функции на этом отрезке и распространении его на всю числовую прямую.

После построения формулируются основные свойства функции y=cosx.

В §20 вводится функция y=sinx. Для построения функции используют формулу:

.

Эта формула показывает, что график функции y=sinx можно получить сдвигом графика функции y=cosx вдоль оси абсцисс вправо на

Затем формулируются свойства функции y=sinx.

В §21 изучается функция y=tgx.

Построение графика функции тангенс, как и косинус, начинается с исследования. Сначала график строится на промежутке , а затем распространяется на всю числовую прямую. Для этого доказывается, что функция y=tgx возрастает на промежутке . Доказанное здесь свойство позволяет сделать вывод о возможности построения графика функции на всю числовую прямую.

После чего формулируются свойства функции y=tgx.

В учебнике Колмогорова все тригонометрические функции вводятся в одном параграфе, который начинается с основных тригонометрических определений. Данные определения не являются новыми для учеников - это повторение материала 9 класса. После этого происходит построение графика функции y=sinx по точкам с использованием свойств периодичности и единичной окружности.

По графику демонстрируются свойства данной функции: ее область определения, область значения, наибольшее и наименьшее значения, нули функции, промежутки постоянных знаков функции. Аналогично рассматриваются свойства функции y=cosx и y=tgx и на графиках этих функций демонстрируются их свойства.

В 9 классе в учебнике Мордковича предлагаются элементы теории тригонометрических функций. Эта глава рассматривается, как дополнительный материал. Весь этот материал повторен и расширен в курсе алгебры и начала анализа в 10-11 классе.

В начале 10 класса учащиеся подробно изучают данный материал. На изучение данного материала отводится 15 параграфов, а по времени - 18 часов.

В §1 и в §2 учащиеся знакомятся с числовой окружностью и с определением тригонометрических функций. Автор выделяет числовую окружность в качестве самостоятельного объекта изучения. Школьникам напоминается материал о вычислении длин дуг окружностей.

Числовая окружность на плоскости рассматривается в §3.

Для изучения числовой окружности автор предлагает игровые моменты.

Изучение самих функций начинается только с 9 параграфа. Перед этим вводятся определения синуса, косинуса , тангенса и котангенса. Первой функцией предлагается y=sinx. Параграф начинается с формулирования свойств функции. После чего предлагается построить график данной функции на отрезке [0; . Затем добавляют к построенному графику симметричную ему относительно начала координат линию. Получили график на отрезке [; . Далее предлагается построить график функции на отрезке [; 3. В результате получили то же самое, что и на отрезке [; .

В следующем параграфе предлагается к рассмотрению функцию y=cosx. Ее график получается из графика функции y=sinx сдвигом на в лево. После чего рассматриваются свойства функции.

В §15 учащимся предлагается функция y=tgx и ytgx. Отмечаются их свойства. Графики строятся так же как в учебниках Алимова.

Глава III. Вспомогательные приемы построения усложненных графиков.

Известно, что методы высшей математики позволяют строить любой график. Однако знаний тех элементов высшей математики, которые даются в средней школе, для этой цели недостаточно. С другой стороны, большое количество графиков, иногда весьма интересных может быть построено средствами исключительно элементарной математики. Наиболее трудные из этих графиков требуют для своего построения хорошего знания многих разделов элементарной математики, а подчас и остроумного применения этих знаний. Построение графиков средствами элементарной математики может служить материалом для закрепления и усовершенствования учениками и абитуриентами своих знаний по многим важным разделам элементарной математики.

§3.1. Параллельный перенос.

п 3.1.1 Сдвиг оси х-ов.

Разобьем этот прием на примере построения графика функции

График этой функции можно построить, пользуясь общими приемами:

1) область существования: (-;), т.е. вся числовая ось;

2) область изменения функции - полуоткрытый интервал 1у;

3) функция четная;

4) при х=0 у=1, т.е. кривая пересекает ось у-ов в точке (0;1); в этой точке функция имеет минимум, так как х2 =0, откуда у1;

Рис.13. Рис.14.

5) контрольная точка: при х=2 у=4+1=5; точка (2; 5).

По этим данным график функции построен на рис. 13.

Тот же график можно построить проще, воспользовавшись уже известным нам графиком функции у=х2. Для этого наносим штриховой линией график функции у=х2 (рис. 14), назовем его исходным графиком.

Сравнивая графики функций у=х2+1 и у=х2, видим, что ординаты у графика заданной функции на 1 больше ординат исходного графика. Следовательно, исходный график надо перенести на 1 вверх, как это и сделано на рисунке 14.

График функции у=х2+1 можно построить еще проще, если воспользоваться тем же исходным графиком (y=x2), но вместо перенесения всей кривой вверх на 1 перенести ось х-ов на ту же 1 вниз, как показано на рисунке 15. Тем самым относительно новой оси х-ов все ординаты

кривой у=х2 увеличиваются на 1 и получается график заданной функции у=х2+1.

Следовательно, график функции y=f(x)+b, где f(x) - простейшая функция, график которой нам известен, можно построить следующим простейшим приемом (рис. 15).

Строится известный нам график функции у=f(х), причем горизонтальная ось вычерчивается штриховой линией. Затем она сдвигается на (-b). Это и есть истинная ось х-ов; первоначальную же горизонтальную ось, нанесенную штриховой линией, можно стереть.

Например, для построения графика функции у=f(x)+3 горизонтальная штриховая ось графика функции у=f(x) сдвигается на 3 единицы вниз, т. е. на (-3); для построения графика функции y=f(x)-3 горизонтальная штриховая ось сдвигается на (+3), т. е. на 3 единицы вверх.

п 3.1.2. Сдвиг оси у-oв

Разберем этот прием на примере построения графика функции

y=(x+1)2.

Общий метод построения графика:

область существования -- вся числовая ось;

область изменения функции - полуоткрытый интервал 0у<;

функция не обладает свойствами четности и нечетности;

при у=0 (х+1)2=0, или х+1=0, откуда х=-1, т. е. кривая пересекает ось х-ов в точке (-1; 0);

при х=0 у=1, т. е. кривая пересекает ось у-ов в точке (0; 1);

контрольные точки:

x=2; у=(2+1)2=9; точка (2; 9);

x=-3; у=(-3+1)2=4; точка (-3; 4).

По этим данным график функции построен на рисунке 17.

Другой способ построения графика функции у=(х+1)2 показан на рисунке 18.

Вначале строится (штриховой лини ей) график исходной функции y=х2.

Далее замечаем, что каждая ордината графика функции y=(х+1)2 равна той ординате исходного графика, которая соответствует абсциссе х+1, т.е. на 1 большей, нежели действительная абсцисса исходного графика.

Например, при х=1 у=(х+1)2=22=4, т. е. при х=1 надо отложить по оси у-ов не 12, а 22=4, т. е. (1+l)2. Эта ордината точки А исходного графика соответствует абсциссе х=2, а для графика заданной функции она соответствует абсциссе х=1, следовательно, точку А надо сдвинуть по оси х-ов на (-1), в точку А1. Таким же образом и в с е точки исходного графика должны быть сдвинуты по оси х-ов на (-1), т. е. весь график исходной функция должен быть сдвинут влево на 1, что сделано на рисунке 18.

Проще вместо перенесения всей кривой на 1 влево сдвинуть ось у-ов на 1 вправо, как это показано на рисунке 19.

Таким образом, график функции y=f(x+a), где f(x)- простейшая функция, график которой нам известен, строится так (рис. 20).

Наносится график функции у=f(x), причем вертикальная ось у-ов вычерчивается штриховой линией. Затем эта вертикальная ось сдвигается на (+а). Это и будет истинная ось у-ов; первоначальную вертикальную ось можно затем стереть.

Рис 19 Рис 20

Например, для построения графика функции y=f(x+3) вертикальная ось графика функции f(x) сдвигается на 3 единицы вправо, т. е. на (+3); для построения графика функции y=f(x-3) вертикальная ось сдвигается на 3 единицы влево, т. е. на (-3).

Примечание. 1. Необходимо иметь в виду, что сдвиг оси у-ов надо производить на величину «добавка» к положительному значению аргумента х, так что если задана функция y = f(-х+а), то ее надо сначала преобразовать в функцию y=f[-(х-а)] и принять за исходную функцию
f(-х), а затем сдвинуть ось у-ов на (-а), т. е. на добавок к (+x).

Пример. у=(-х+1)2.

Преобразуем: у=[-(x-l)]2=(x-1)2.

Приняв за исходную функцию у=х2, как и при построении графика функции у=(х+1)2 (рис. 19), сдвигаем ось у-ов на (-1), т. е. на добавок к () (рис. 21), а не на (+1), как на рисунке 19.

Для построения графика функции у=(+1)3 следует, преобразовав ее в функцию у=[-(х-1)]3, принять за исходный график заданной функции у=()3=-х3 и сдвинуть ось у-ов на (-1).

Примечание 2. Если требуется построить график функции у=f(x+а)+b (рис. 22), то сначала строится график функции у=f(х), причем обе оси наносятся штриховыми линиями. Затем горизонтальная ось сдвигается на (-b), т.е. в сторону, обратную знаку добавка к функции, вертикальная ось сдвигается на (+а), т.е. в сторону знака добавка к аргументу.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.