Рефераты. Диалектика развития понятия функции в школьном курсе математики

Область определения функции представляет собой объединение двух бесконечных интервалов (-, 1) и (1,). Очевидно, что если b, то неравенство b выполняется, например, при х=0. Если же b>0, то неравенство b в области определения функции равносильно неравенству |х-1|,которое выполняется, например, при х=1+, что и требовалось доказать.

п.1.4.2. четность, нечетность

Функция у=f(х) называется четной, если она обладает следующими двумя свойствами: 1) область определения этой функции симметрична относительно точки 0 (т.е. если точка а принадлежит области определения, то точка -а также принадлежит области определения); 2) для любого значения х, принадлежащего области определения этой функции, выполняется равенство f(x)=f(-x).

Функция у=f(х) называется нечетной, если:

область определения этой функции симметрична относительно точки 0;

2) для любого значения х, принадлежащего области определения этой функции, выполняется равенство f(x)=-f(-x).

Без труда проверяется, что функция y=|х| является четной. Точно так же функция у=х2n четна, а функция у=x2n+1 нечетна (при любом целом п). Без труда проверяется также, что сумма, разность, произведение и частное двух четных функций снова являются четными функциями. Далее, сумма и разность двух нечетных функций являются нечетными функциями. Наконец, произведение и частное двух нечетных функций являются четными функциями, а произведение и частное четной и нечетной функций являются нечетными функциями

Из сказанного следует, например, что многочлен, у которого все показатели четны, является четной функцией, а многочлен, у которого все показатели нечетны, является нечетной функцией. Так, функция y=х4+2х2-1 четна, а функция х3-х5 нечетна.

Не следует думать, что всякая функция непременно является или четной или нечетной: существуют функции, не являющиеся ни четными, ни нечетными.

Пример 15. Доказать, что функция f(х)=2х+1 не является ни четной, ни нечетной.

Решение. Областью определения этой функции является вся числовая ось, т. е. условие 1) в определении четной и нечетной функций выполнено. Чтобы доказать, что функция f(х), не является четной, мы должны поэтому доказать, что условие 2) в определении четной функции не выполнено, т. е. что существует (хотя бы одно) значение х, для которого f(x)f(-x). Возьмем x=1. Тогда f(1)=3, f(-1)=-1, т.е. f(1)f(-1). Таким образом, функция f(х) не является четной. Аналогично, так как f(1)-f(-1), то функция f(x)=2x+1 не является нечетной.

Четность или нечетность функции весьма существенно сказывается на форме графика этой функции. Именно, имеют место следующие две теоремы:

Теорема. График четной функции симметричен относительно оси у.

Доказательство. Пусть точка (x0; y0) принадлежит графику четной функции у=f(х), т.е. у0=f(х0). Точка, симметричная с точкой у=f(х) относительно оси у, имеет координаты (-х0; у0). Надо доказать, что точка (-x0; y0) принадлежит графику функции у=f(х), т.е. доказать, что y0 =f(-х0). Но это следует из определения четной функции: f(0)=f(х0)=y0.

Теорема. График нечетной функции симметричен относительно начала координат (0; 0).

Замечание. Из этих теорем следует, что для построения графика четной функции достаточно построить часть графика этой функции для х, а затем построенную часть графика симметрично отразить относительно оси у, т.е. для каждой точки графика с абсциссой х>0 построить точку, симметричную ей относительно оси у. В частности, таким способом можно построить график функции y=f(|x|), так как функция f(|x|) является четной. Для построения графика нечетной функции достаточно построить часть графика этой функции для х, а затем построенную часть графика симметрично отразить относительно точки (0; 0), т.е. для каждой точки графика с абсциссой х>0 построить точку, симметричную ей относительно начала координат. (Заметим, что для осуществления симметрии некоторой кривой относительно начала координат можно поступить следующим образом: сначала данную кривую К симметрично отразить относительно оси ординат, а затем полученную кривую К' симметрично отразить относительно оси абсцисс, рис. 10)

п.1.4.3. монотонность

Функция у=f(х) называется неубывающей на отрезке [а, b], если при ах1х2b всегда f(x1)f(x2); если при том же условии всегда f(x1)f(x2), функция f(х) называется невозрастающей на отрезке [а,b]. Неубывающие и невозрастающие функции вместе образуют класс монотонных функций. Монотонные функции обладают целым рядом специальных свойств, которые делают их во многих случаях очень удобным орудием исследования.

Прежде всего всякая функция f(х), монотонная на данном, отрезке [а, b], ограничена на этом отрезке [как обычно, отрезок предполагается закрытым; для открытых отрезков утверждение неверно: функция у= монотонна, но не ограничена в открытом отрезке (0,1)]; в самом деле, при аxb f(х) заключено между f(a) и f(b); очевидно, далее, что гранями монотонной функции служат её значения f(а) и f(b) в концах данного отрезка; эти же числа служат наибольшим и наименьшим значениями монотонной функции f(х) в отрезке [а, b].

п.1.4.4. точки экстремума

Рассмотрим график непрерывной функции y=f(x), изображенной на рисунке. Значение функции в точке x1 будет больше значений функции во всех соседних точках как слева, так и справа от x1. В этом случае говорят, что функция имеет в точке x1 максимум. В точке x3 функция, очевидно, также имеет максимум. Если рассмотреть точку x2, то в ней значение функции меньше всех соседних значений. В этом случае говорят, что функция имеет в точке x2 минимум. Аналогично для точки x4.

Функция y=f(x) в точке x0 имеет максимум, если значение функции в этой точке больше, чем ее значения во всех точках некоторого интервала, содержащего точку x0, т.е. если существует такая окрестность точки x0, что для всех x?x0, принадлежащих этой окрестности, имеет место неравенство f(x)<f(x0).

Функция y=f(x) имеет минимум в точке x0, если существует такая окрестность точки x0, что для всех x?x0, принадлежащих этой окрестности, имеет место неравенство f(x)>f(x0).

Точки, в которых функция достигает максимума и минимума, называются точками экстремума, а значения функции в этих точках экстремумами функции.

Обратим внимание на то, что функция, определенная на отрезке, может достигать максимума и минимума только в точках, заключенных внутри рассматриваемого отрезка.

Отмети, что если функция имеет в точке максимум, то это не означает, что в этой точке функция имеет наибольшее значение во всей области определения. На рисунке, рассмотренном выше, функция в точке x1 имеет максимум, хотя есть точки, в которых значения функции больше, чем в точке x1. В частности, f(x1)<f(x4) т.е. минимум функции больше максимума. Из определения максимума следует только, что это самое большое значение функции в точках, достаточно близких к точке максимума.

Теорема. (Необходимое условие существования экстремума.) Если дифференцируемая функция y=f(x) имеет в точке x=x0 экстремум, то ее производная в этой точке обращается в нуль.

Доказательство. Пусть для определенности в точке x0 функция имеет максимум. Тогда при достаточно малых приращениях Дx имеем f(x0+Дx)<f(x0), т.е. f(x0+x)-f(x0)<0. Но тогда при x<0, при x>0.

Переходя в этих неравенствах к пределу при Дx>0 и учитывая, что производная f '(x0) существует, а следовательно предел, стоящий слева, не зависит от того как Дx>0, получаем: при Дx>0-0 f '(x0)?0 а при Дx>0+0
f '(x0)?0. Так как f '(x0) определяет число, то эти два неравенства совместны только в том случае, когда f '(x0)=0.

Доказанная теорема утверждает, что точки максимума и минимума могут находиться только среди тех значений аргумента, при которых производная обращается в нуль.

Мы рассмотрели случай, когда функция во всех точках некоторого отрезка имеет производную

Функция может иметь экстремум лишь в двух случаях: 1) в точках, где производная существует и равна нулю; 2) в точке, где производная не существует.

Однако, если в некоторой точке x0 мы знаем, что f '(x0)=0, то отсюда нельзя делать вывод, что в точке x0 функция имеет экстремум.

Значения аргумента из области определения функции, при которых производная функции обращается в нуль или не существует, называются критическими точками.

Из всего вышесказанного следует, что точки экстремума функции находятся среди критических точек, и, однако, не всякая критическая точка является точкой экстремума. Поэтому, чтобы найти экстремум функции, нужно найти все критические точки функции, а затем каждую из этих точек исследовать отдельно на максимум и минимум. Для этого служит следующая теорема.

Теорема. (Достаточное условие существования экстремума.) Пусть функция непрерывна на некотором интервале, содержащем критическую точку x0, и дифференцируема во всех точках этого интервала (кроме самой точки x0). Если при переходе слева направо через эту точку производная меняет знак с плюса на минус, то в точке x=x0 функция имеет максимум. Если же при переходе через x0 слева направо производная меняет знак с минуса на плюс, то функция имеет в этой точке минимум.

Таким образом, если

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.