Рефераты. Развитие, становление и основные аспекты фармации

Для выявления кетопроизводных используют реакции образования гидразонов и реакции получения кетоксимов. Кетоны, вступая в реакции конденсации с различными гидразинами (фенилгидразин; 2,4-динитрофенилгидразин), образуют гидразоны, а взаимодействуя с гидроксиламином — кетоксимы. И те, и другие представляют собой бесцветные или слегка окрашенные устойчивые соединения, нерастворимые в воде, со стабильной температурой плавления. Это позволяет использовать их для установления подлинности таких ке-тонов, как камфора, бромкамфора, а также стероидных соединений, содержащих в молекуле кетогруппу.

В фармацевтическом анализе используют также процесс, обратный конденсации, в результате которого образуются альдегиды и кетоны. Последние затем обнаруживают по характерному запаху или с помощью цветных реакций (фтивазид и др.)

Реакции окислительной конденсации. Процесс окислительного расщепления и образования азометинового красителя лежит в основе нингидриновой реакции. При нагревании с нингидрином (трикето-гидринденгидрат) растворов аминокислот, иминокислот, пептонов, полипептидов, первичных и вторичных алифатических аминов возникает окрашивание. Наиболее широко эту реакцию используют для идентификации и фотоколориметрического определения а- и р-ами-нокислот, в присутствии которых появляется темно-синяя окраска, обусловленная образованием замещенной соли дикетогидриндили-дендикетогидрамина — продукта конденсации избытка нингидрина и восстановленного нингидрина с аммиаком, выделившимся при окислении испытуемой аминокислоты. Следует заметить, что появляющаяся окраска присуща не одному соединению, а нескольким окрашенным веществам в зависимости от химической структуры исходной аминокислоты. Однако во всех случаях образуются фиолетового цвета бис-1,3-дикетоинденил. С помощью нингидриновой реакции определяют глутаминовую, аминокапроновую аминокислоты, фени-бут, аминалон, метионин, сарколизин, дийодтирозин и др.

Кроме аминокислот и их производных, нингидрин в слабощелочной среде образует окрашенные как и в случае алифатических аминокислот сине-фиолетовые продукты реакции с метазоном и эфедрином. Положительную реакцию в этих условиях дают также рибофлавин (зеленое окрашивание), изониазид (нестойкое красное), эуфиллин (красно-фиолетовое).

Похожа по химизму с нингидриновой реакцией мурексидная проба, основанная на окислении молекулы пурина с образованием метилированных производных аллоксантина. Последующее воздействие раствором аммиака приводит к образованию аммонийной соли метилированного производного пурпуровой кислоты, окрашенного в пурпурно-красный цвет. Мурексидную пробу используют для испытания подлинности производных пурина (кофеин, теобромин, теофиллин и др.).

Альдегиды, спирты, органические кислоты, ангидриды кислот, барбитураты образуют окрашенные продукты конденсации с фенолами. Процесс конденсации лежит в основе цветной реакции формальдегида с салициловой и хромотроповой кислотами.

В этих цветных реакциях последовательно происходят процессы конденсации, а затем окисления с образованием окрашенных соединений парахиноидной структуры (ауриновый краситель). Концентрированная серная кислота оказывает дегидратирующее действие в реакции конденсации и, кроме того, является окислителем при образовании хиноидного соединения. Эту цветную реакцию применяют для обнаружения формальдегида, выделяющегося при окислении метилового спирта, а также при гидролизе некоторых лекарственных веществ (никодин, метазид, гексамидин и др.).

К этому же типу можно отнести реакцию резорцина с фталевым ангидридом, сопровождающуюся образованием флуоресцеина. Реакция образования ауринового красителя лежит в основе взаимодействия гексаметилентетрамина с фенолами в присутствии концентрированной серной кислоты. Этот реактив образует окрашенные соединения и с ментолом, терпингидратом, промедолом (красное), а также с производными бензиновой кислоты — амизилом, бензацином, метацином (сине-зеленое) и этакридином (зеленое). Вместе с тем производные дифенилуксусной и дифенилпропионовой кислот (апрофен, спазмолитик) в этих условиях не дают положительной реакции.

Рад лекарственных веществ, содержащих в молекуле фенильный радикал (промедол, фенобарбитал), подвергается формальдегидом и концентрированной серной кислотой окислительной конденсации. При осторожном наслаивании на раствор формальдегида в концентрированной серной кислоте раствора препарата на границе слоев появляется кольцо красного цвета (проба Ле Розена).

Ароматические альдегиды образуют окрашенные продукты с соединениями, содержащими в молекуле активную метиленовую группу (камфора).

С помощью ванилина можно обнаружить наличие индольного цикла в молекуле (стрихнин, резерпин).

Реакции этерификации, ацилирования и гидролиза. Для выявления веществ, содержащих в молекуле спиртовой (фенольный) гидроксил или карбоксильную группу, используют реакцию этерификации, а для идентификации сложных эфиров — обратный процесс — гидролиз (омыление). Этерификация протекает в присутствии дегидратирующих веществ (концентрированная серная кислота), а гидролиз — в кислой или щелочной среде. Аналогичный процесс лежит в основе идентификации простых эфиров. Применение в анализе находит и реакция ацилирования (особенно ацетилирования) аминопроизводных и обратный процесс — гидролиз ацильных производных. Образовавшиеся в результате этих реакций сложные эфиры, ацильные производные и продукты гидролиза могут иметь характерный запах, стабильную температуру плавления или другие константы, подтверждающие подлинность лекарственного вещества. Реакции этерификации, которые сопровождаются образованием этилацетата, имеющего характерный запах, применяют, например, для идентификации производных этилового спирта или уксусной кислоты (калия ацетат).

Чаще для испытания подлинности используют процесс гидролиза эфиров и ацильных производных (парацетамол, фенацетин и др.). Концентрированную серную кислоту применяют для гидролиза простых эфиров (кодеин, хинин, котарнина хлорид). Гидролиз простых арилалифатических эфиров (димедрол) основан на дезалкилирова-нии при нагревании в присутствии минеральных кислот.

Для идентификации сложных эфиров салициловой кислоты (ацетилсалициловой кислоты, метилсалицилата, фенилсалицилата) проводят гидролиз и в кислой, и в щелочной средах. Образовавшиеся продукты гидролиза идентифицируют с помощью цветных реакций, органолептически (по запаху) или по температуре плавления. Сложные эфиры арилалифатических кислот определяют путем щелочного гидролиза с последующим установлением температуры плавления выделенных кислот. Сложные эфиры азотной кислоты (нитроглицерин, эринит) образуют при гидролизе нитраты, которые затем и обнаруживают, используя в качестве реактива дифениламин. Иногда для выявления сложных эфиров их в начале подвергают гидролизу, а затем проводят этерификацию образовавшейся органической кислоты спиртом (амилнитрит, кислота ацетилсалициловая) или, наоборот, выделившегося спирта кислотой (мепротан). Возможен также вариант, когда полученные при гидролизе двойного эфира (кокаин) спирт и кислота взаимодействуют между собой с образованием сложного эфира. Его обнаруживают по характерному запаху или по температуре плавления.

Для веществ, содержащих в молекуле сложноэфирную, лактонную или лектамную группы, общим способом испытаний является гидроксамовая реакция. Если процесс гидролиза сложных эфиров выполнять в щелочной среде в присутствии гидроксиламина, то образуются гидроксамовые кислоты, которые взаимодействуют с солями металлов, ионов железа (III), и в зависимости от рН среды образуют различные по составу и окраске продукты реакции (красно-бурая, вишне во-красная, красно-фиолетовая). Особенно часто эту реакцию применяют для идентификации сложных эфиров (салициловой кислоты — фенилсалицилат, метилсалицилат, л-аминобензой-ной кислоты, алифатических и других кислот), содержащих сложную эфирную группу, алкалоидов (атропин, кокаин), стероидных гормонов (кортизона ацетат, тестостерона пропионат и др.), высших жирных кислот, коллагенов, пептидных связей в белках. Дают эту реакцию также амиды (бромизовал, фенацетин, парацетамол, нитразепам) и имиды (барбитураты, бемегрид, фенсукцинимид).

С гидроксиланом легко реагируют сложные эфиры, значительно медленнее в сильнощелочной среде и при повышенной температуре — амиды и имиды. Также в щелочной среде вступают в эту реакцию лактоны (пилокарпин и сердечные гликозиды с лактоновым циклом). Для образования окрашенных комплексов наряду с солями железа (III) используют соли меди (II), реже другие катионы металлов. Синтетические и природные пенициллины, содержащие р-лактамный цикл, образуют гидроксамат меди при рН 7,0, цефалоспорины при рН 6,0 в присутствии никеля. Образование устойчивых красно-фиолетовых комплексов гидроксамовых кислот с солями железа (III) в кислой среде (рН 1,5—3,0) с максимумом светопоглощения в области 470—540 нм использовано для фотометрического определения большинства указанных лекарственных веществ. При выборе условий выполнения анализа важное значение имеют не только химическая структура препарата, но и природа растворителя, рН среды, температура.

Реакция разложения аминов и аминопроизводных. Некоторые соли четвертичных аммониевых оснований при нагревании до плавления выделяют триметиламин, другие (ацетилхолин-хлорид) разлагаются с его выделением под действием щелочей. Амиды ароматических, гетероциклических кислот при нагревании в растворах едких щелочей (гидроксидов) разлагаются с образованием аммиака или соответствующего алкил- или диалкиламина, которые регистрируют по характерному запаху. Этот процесс лежит в основе испытаний подлинности амида салициловой, диэтиламида никотиновой и других кислот. Производные уретана под действием щелочей образуют спирт, аммиак и карбонат натрия (прозерин, пармидин, мепротан).

Вещества, содержащие в молекуле уреидную группу, гидролизу-ются в кислой и в щелочной средах по общей схеме. Для испытания подлинности циклических и ациклических уреидов, алкилуреидов сульфокислот, производных гуанидина и семикарбазона используют реакцию гидролиза в щелочной среде. При этом образуется аммиак, который обнаруживают по запаху или изменению окраски влажной красной лакмусовой бумаги. Мочевина, образующая под действием щелочей производные гуанидина, разлагается до аммиака и карбоната натрия. Если на продукты щелочного гидролиза подействовать избытком минеральной кислоты, то наблюдается выделение газа (диоксид углерода). Продукты гидролиза ациклических и циклических уреидов при этом нейтрализуются с образованием соответствующей жирной кислоты, которую обнаруживают по запаху.

Амиды сульфаниловой кислоты идентифицируют реакцией пиролитического расщепления (пиролиза) плавлением порошка лекарственного вещества в пробирке. При этом выделяется аммиак (или другие газы), придающий веществу характерную окраску. Реакцию разложения нагреванием в присутствии карбоната натрия используют для обнаружения некоторых производных пиридин карбоновых кислот и их амидов. Образуется пиридин, определяемый по запаху.

Реакции окисления-восстановления. Лежащие в основе многих химических реакций, эти реакции используют для испытания подлинности лекарственных веществ. Реакцию гидрирования нитросоединений (металлическим цинком в присутствии соляной кислоты) применяют для получения аминов и последующего образования из них окрашенных диазо- и азосоединений. Процесс гидрирования, основанный на присоединении водорода по месту двойной связи, можно использовать для идентификации непредельных соединений. Препараты, содержащие в молекуле непредельные связи (сферофизи-набензоат, карбокромен, нистатин, амфотерицин В), под действием окислителей (перманганат калия) подвергаются окислительной гидратации. Происходит обесцвечивание раствора перманганата калия.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.