Рефераты. Исследование силовой подготовки девушек и женщин, занимающихся фитнесом

Исследования выявили, что подавляющее большинство граждан России имеют силу и выносливость мышц ниже «биологического и социального оптимума». Отсюда многие заболевания, плохое самочувствие, низкая работоспособность [17;54]. Непосредственным ограничителем достижения более высоких результатов в физической и трудовой деятельности является наступающее утомление. Утомление – особый вид функционального состояния человека, временно возникающий под влиянием продолжительной или интенсивной работы и приводящий к снижению ее эффективности. Утомление проявляется в уменьшении силы и выносливости мышц, ухудшении одной и той же внешней работы, в замедлении реакции и скорости переработки информации, ухудшении памяти, затруднении процесса сосредоточения и переключения внимания и других явлениях [25]. Поэтому основное, что должно быть достигнуто в результате физической подготовки это - отдаление момента утомления или повышение к нему устойчивости организма. Среди факторов, приводящих к утомлению при различной длительности физической работы, выделяют «центральные»:

- утомление корковых центров двигательной зоны ЦНС и снижение частоты импульсации быстрых ДЕ;

- недостаточную секрецию стресс-гормонов (катехолонинов и глюкокортикоидов);

- недостаточную производительность миокарда и систем, обеспечивающих адекватный региональный и локальный кровоток, что может приводить к мышечной гипоксии;

- изменение в деятельности вегетативной нервной системы и многих железах внутренней секреции;

а также «переферичекие»:

- снижение массы фосфогенов;

- увеличение концентрации ионов водорода и лактата;

- снижение потребления кислорода мышцами;

- снижение концентрации гликогена [18].

Однако при более глубоком рассмотрении обеих групп факторов профессорами Е.Б. Мякинченко и В.Н. Селуяновым была выдвинута гипотеза, что большая мощность энергетических и сократительных систем локализованных непосредственно в мышцах и определяющих локальную выносливость, позволяет отдалить наступление утомления, а также снизить нагрузки на «центральные факторы», интенсивное функционирование которых также может приводить к утомлению [16;26].

Наиболее устойчивые к утомлению являются ММВ, а наименее – БМВ [20]. Благодаря гиподинамии и в процессе старения организма состав МВ может измениться. Наши мышцы «теряют» БМВ, что ведет к относительному увеличению процентного состава ММВ [8].

Переходя к непосредственному описанию содержания моей работы, я хочу показать, что при повседневной активности человека и во время аэробной тренировки любого типа ММВ выполняют основной объем работы, так как БМВ включаются в работу на полную мощность только в быстрых движениях, при преодолении или удержании значительного сопротивления или тогда, когда силовое или интенсивное упражнение продолжается «до отказа». Однако такого рода упражнения в фитнесе или повседневной жизни встречаются относительно редко. Следовательно, от «подготовленности» как силовой (то есть гипертрофии), так и аэробной (то есть окислительного потенциала, капилляризации). ММВ в конечном итоге зависят физическая работоспособность человека. Таким образом, сочетание силовых упражнений гипертрофирующих ММВ (увеличивающих их силу) и аэробных упражнений (в другой день), увеличивающих их окислительный потенциал, наиболее эффективно решает задачу тренировки именно тех структур исполнительного аппарата, которые в наибольшей мере нужны человеку в повседневной активности.


1.3 Нервно-мышечный аппарат


Скелетные (поперечнополосатые) мышцы – это «машины», преобразующие химическую энергию непосредственно в механическую и тепловую. Основным морфофункциональным элементом нервно-мышечного аппарата является двигательная единица (ДЕ). ДЕ – это мотонейрон с иннервируемыми или мышечными волокнами [25].

В структуре мышечной ткани различают два типа МВ – медленносокращающиеся МВ и быстросокращающиеся МВ.

ММВ – обладают следующими свойствами: небольшой скоростью сокращения, большим количеством митохондрий, высокой активностью оксидативных энзимов, широкой васкуляризацией, высоким потенциалом накопления гликогена [18].

ММВ – малоутомляемы. Они обладают хорошо развитой капиллярной сетью. На одно мышечное волокно в среднем приходиться 4-6 капилляров. Благодаря этому во время сокращения они обеспечиваются достаточным количеством кислорода. В их цитоплазме имеется большое количество митохондрий и наблюдается высокая активность окислительных ферментов. Все это определяет их существенную аэробную выносливость и позволяет выполнять работу умеренной мощности длительное время без утомления [25].

БМВ – наоборот, характеризуются относительно низкой аэробной выносливостью. Они более приспособлены к анаэробной работе (без кислорода), чем ММВ. Это означает, что их АТФ образуется не путем окисления, анаэробным реакциям [8].

Из всех типов ДЕ мотонейроны БМВ – наиболее крупные, имеют толстый аксон, разветвляющийся на большое число концевых веточек и иннервирующий соответственно большую группу мышечных волокон. Эти мотонейроны не способны в течение длительного времени поддерживать устойчивую частоту разрядов, то есть быстро утомляются. Более всего они приспособлены для выполнения кратковременной, но мощной работы [25]. При этом необходимо отметить, что сила, производимая отдельными ММВ и БМВ по величине отличается незначительно. Различия в величине производимой силы между ММВ и БМВ обусловлено количеством МВ в ДЕ, а не величиной силы, производимой каждым волокном [8].

Соотношение мышечных волокон разных типов детерминировано генетически. Вероятно, структура МВ, соотношение волокон различного типа заложены на уровне ДНК и в значительной мере определяются особенностями нейромышечной регуляции, о чем вполне убедительно свидетельствуют исследования, в которых изучалось влияния на изменения типа МВ перекрестной иннервации. Таким образом, генетически заданный тип иннервации обеспечивает формирование фенотипа мышечной ткани, которая лишь в относительно узких границах может быть модифицирована напряженной тренировкой, не более 5% [26]. Однако результаты отдельных исследований позволяют говорить о том, что определенная часть БМВ заложена в человеке, однако подавлена в процессе генотипической и фенотипической адаптации [18]. Содержание ММВ и БМВ во всех мышцах тела не одинаково. Как правило, в мышцах рук и ног человека сходный состав волокон. Исследования показывают, что у людей с преобладанием ММВ в мышцах ног, как правило, большее количество этих же волокон и в мышцах рук. Камбаловидная мышца, находящаяся глубже икроножной, у всех людей почти полностью состоит из ММВ [6]


1.4 Биохимия клетки. Энергетика разных типов МВ.


Процессы мышечного сокращения, передачи нервного импульса, синтеза белка идут с затратами энергии. В клетках энергия используется только в виде АТФ. Освобождение энергии, заключенной в АТФ, осуществляется благодаря ферменту АТФ-азе, который имеется во всех местах клетки, где требуется энергия. По мере освобождения энергии образуется молекулы АДФ, фосфора (Ф), ионы водорода (Н)


АТФ = АДФ+Ф+Н+Энергия


Ресинтез АТФ осуществляется в основном за счет запасов КРФ. Когда КрФ отдает свою энергию для ресинтеза АТФ, то образуется Кр и Ф.

КрФ = Кр+Ф+Энергия


Существуют два основных пути для образования АТФ: анаэробный и аэробный [2].

Анаэробный путь или анаэробный гликолиз связан с ферментативными системами, расположенными на мембране СПР и в саркоплазме. При появлении рядом с этими ферментами Кр и Ф. запускается цепь химических реакций, в ходе которых гликоген или глюкоза распадаются до пирувата с образованием молекулы АТФ. Молекулы АТФ тут же отдают свою энергию для ресинтеза КрФ, а АДФ и Ф вновь используются в гликолизе для образования новой молекулы АТФ. Пируват имеет две возможности для преобразования:

1) превратиться в Ацетил-коэнзим-А, подвергнуться в митохондриях окислительному фосфорилированию до образования углекислого газа, воды и молекулы АТФ. Это метаболический путь – гликоген – пируват – митохондрия – углекислый газ и вода – называют аэробным гликолизом.

2) с помощью фермента ЛДГ-М пируват превращается в лактат. Это метаболический путь – гликоген – пируват – лактат – называется анаэробным гликолизом и сопровождается накоплением ионов Н.

Аэробный путь, или ОФ, связан с митохондриальной системой. При появлении рядом с митохондриями Кр и Ф с помощью митохондриальной КФК-азы выполняется ресинтез КрФ за счет АТФ, образовавшейся в митохондрии. АДФ и Ф поступают обратно в митохондрию для образования новой АТФ. Для синтеза АТФ имеется два метаболических пути:

1) аэробный гликолиз;

2) окисление липидов (жиров).

Аэробные процессы связаны с поглощением ионов Н, а в ММВ (МВ сердца и диафрагмы) преобладает фермент ЛДГ-С, который более интенсивно превращает лактат в пируват. Поэтому при функционировании ММВ идет быстрое устранение лактата и ионов Н [20].

Энергообеспечение ММВ гипотетически будет осуществляться по следующей схеме: первые сек. – КрФ (20-25с.), затем – КрФ и жиры, далее – вклад КрФ и жиров будет минимизироваться параллельно с увеличением вклада углеводов, до тех пор, пока углеводы (гликоген, глюкоза) и лактат не станут практически единственными субстратами ОФ. При этом концентрация КрФ в среднем по мышце будет сохраняться на относительно постоянном уровне около 70-80% от исхода [26].

Вторая стадия работы ММВ – это стадия снижения вклада этих волокон в генерацию механического усилия, создаваемого мышцей. При придельной длительности работы до 10-15 мин. Снижение производительности этих МВ может вызваться их закислением проникающими через саркоплазму ионов Н. При более длительной работе снижение вклада волокна вызывается исчерпанием внутренних запасов углеводов. Так как использование в качестве субстрата жиров снижает скорость выработки АТФ при увеличении потребления кислорода митохондриями [27;34].

Третья стадия – быстрое снижение производительности ММВ в результате их закисления, нарушения в работе клеточных мембран гипотетически в связи с гипоксией из-за ухудшения функционального состояния системы транспорта кислорода [34].

Энергетика БМВ будет иметь четыре стадии развития:

Первая стадия – вклад БМВ в производимую механическую работу невелик, но возрастает под влиянием ЦНС в процессе снижения производительности уже вовлеченных МВ.

Вторая стадия – наблюдается максимальный вклад мышечного волокна в работу, в основном за счет КрФ.

Третья стадия – постепенное снижение вклада волокна в связи с переходом на анаэробный гликолиз.

Четвертая стадия – быстрое снижение производительности волокна в связи с высокой степенью закисления и исчерпания КрФ [34].

1.5 Механизмы энергообеспечения мышечного сокращения


При выполнении нагрузки с возрастающей мощностью имеют место следующие биохимические и физиологические процессы.

Малая интенсивность физического управления требует включения ММВ, работа выполняется в аэробном режиме, а в качестве субстрата окисления используют в основном жирные кислоты. Дальнейшее повышение интенсивности связано с участием новых МВ, более высокопороговых ДЕ. После того как будут задействованы все МВ, более высокая мощность не может далее обеспечиваться только за счет окислительного фосфорилирования. Включение БМВ, сокращающихся за счет энергии от анаэробного гликолиза, приводит к образованию МК и ее выходу в кровь. Часть лактата становиться субстратом окисления в ММВ, сердце и дыхательные мышцы. При достижении такой интенсивности, когда БМВ будут продуцировать столько лактата, что он не будет успевать окисляться в ММВ, появляется АнП (концентрация лактата в крови около 4мМ/л).

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.