Рефераты. Применение алгоритмического метода при изучении неравенств

Аналогично решите неравенства

b) х2+2х+1?0 (Заполните таблицу)

c) -х2+х-1?0 (Заполните таблицу)

3. Формулировка алгоритма.

20. Сформулируйте этапы решения квадратных неравенств (графическим методом).

Ответы:

1. а)1<х<1.5

b) х - любое число;

c) нет решения.

2. Алгоритм решения квадратных неравенств с одной переменной (графическим методом)

1.Перенесите все слагаемые в левую часть и решите уравнения, приравняв выражение в левой части к нулю (найдите дискриминант квадратного трёхчлена, и выясните, имеет ли трёхчлен корни).

2. Если трёхчлен имеет корни, то отметьте их на оси абсцисс и через отмеченные точки проведите схематично параболу ветви которой направлены вверх при а>0 или вниз при а<0, если трёхчлен не имеет корней, то схематично изобразите параболу, которая расположена в верхней полуплоскости при а>0 или в нижней полуплоскости при а<0.

3. Найдите на оси ОХ промежутки, для которых точки параболы расположены выше оси ох (если ах2+вх+с>0) или ниже оси ох (если ах2+вх+с<0).

4.Запишите ответ, взяв эти промежутки в объединение.

II Усвоение.

Составной частью работы с алгоритмом является система упражнений, предназначенных для осознания учащимися изучаемого материала, более глубокого его усвоения, формирования необходимых понятий. По ходу выполнения упражнений в задачах даются дополнительные разъяснения, а к наиболее трудным - ответы.

1. Приведите неравенства к квадратному виду

1) у2+5у2-3у>5(у+1)

2) 0.2(z+4)-0.8?1.2z+2

3) 6+m2+m<m(2m2-6)

2.(устно) Используя график функции у=ах2+вх+с (см рис). указать, при каких значениях х эта функция принимает положительные значения; отрицательные значения; значения равные нулю.

у у у

-3

3. Построить график функции f(x) (схематично). Определить по графику значения х при которых функция принимает положительные значения, отрицательные значения.

1)

2)

3)

4.Решите графически неравенства

1)

2)

3)

4)

4. Найдите, при каких значениях х трёхчлен

· принимает положительные значения;

· принимает отрицательные значения;

5. Решите неравенства.

a) х2<16;

b) х2?3;

c) 0,2х2 >1,8;

d) -5х2?х.

6.Найдите множество решений неравенств:

a) 3х2+40х+10<-х2+11х+3;

b) 9х2-х+9?3х2+18х-6;

c) 2х2+8х-111<(3х-5)(2х+6).

7. Докажите, что при любом значении переменной верно неравенство:

a) 4х2+12х+9?0;

b) -5х2+8х-5<0.

III.Применение алгоритма

На этом этапе работы с алгоритмом задания предлагаются аналогичные рассмотренным, но с постепенным усложнением. В ходе решения учитель проверяет правильность понимания учащимися изученного вопроса, уточняет формулировки, разъясняет допущенные ошибки.

1.Решите неравенство.

1)

2)

3) 2x (3x-1)>4x2+5x+9

4) (5x+7)(x-2)<21x2 -11x-13

2. Найдите общее решение неравенств х2+6х-7 ? 0 и х2-2х-15 ? 0

3.Докажите, что:

· х2+7х+1>-x2+10x-1 при любом х;

· -2х2+10х<18-2x при х?3.

4. Одна сторона прямоугольника на 7 см больше другой. Какой может быть сторона, если площадь прямоугольника меньше 60 см2.

5. Найдите область определения функции.

· у = 12х-3х2

· у = 1/ 2х 2 -12х+18

После того как учащиеся познакомились с графическим методом, предлагается метод интервалов - как ещё один из способов решения квадратных неравенств.

Формирование алгоритма решения квадратных неравенств с одним неизвестным (методом интервалов) можно осуществить аналогичным образом.

Алгоритм решения неравенства второй степени c одним неизвестным (методом интервалов).

1. Раскройте скобки в обеих частях неравенства (если есть дробные коэффициенты, то неравенство освободить от дробей).

2. Перенесите все слагаемые в левую часть, приведите подобные члены (если нужно).

3. Решите уравнения, приравняв выражение в левой части к 0 (найдите дискриминант и выясните, имеет ли трёхчлен корни).

4.Найденные корни уравнения нанесите на числовую ось. Эти корни разбивают числовую ось на промежутки, на каждом, из которых выражение, стоящее в левой части, сохраняет знак.

5. Выберите на каждом из промежутков какое - нибудь значение (пробную точку) и определите знак выражения в этой точке.

6. Выберите промежутки, в которых выражение имеет требуемый знак, и запишите ответ, взяв их в объединение.

1. Актуализация знаний

1. ах2+вх+с=0

1) Решите квадратное уравнение.

2) Разложите левую часть уравнения по формуле ах2+вх+с=а(х-х1)(х-х2), где х1,х2 - корни данного уравнения.

2.Найдите корни уравнения, разложите уравнение по корням, отметьте корни на числовой оси.

·

·

3.Разложите многочлен на множители

·

·

II Усвоение

1. Сведите следующие неравенства к квадратному.

1)

2)

3)

2. Найдите при каких значениях х трёхчлен

· принимает положительные значения;

· принимает отрицательное значения;

3. Решите неравенства

4. Длина прямоугольника на 5 см. больше ширины. Какую ширину должен иметь прямоугольник, чтобы его площадь была больше 36см2.

5. При каких значениях х функция у= - х2 + 8х + 2 принимает значения больше 9.

6. Разложите многочлен на множители.

·

·

·

7. Решите неравенство методом интервалов.

·

·

·

·

·

·

8. Найдите область определения выражения.

1)

2)

9. Решите неравенство

1)

2)

3)

III.Применение алгоритма

1. Решите неравенство.

1)

2)

3)

4)

2. Найдите общее решение х2+6х-7 ? 0 и х2-2х-15 ? 0

3.Решите систему неравенств.

1)

2)

3)

4.Катер должен не более чем за 4 часа пройти по течению реки 22,5км и вернуться обратно. С какой скоростью относительно воды должен идти катер, если скорость течения равна 3км/ч.

5.Решите неравенство методом интервалов.

1)

2)

3)

6.Решите неравенство.

1)

2)

3)

§4 Опытное преподавание.

Факультативное занятие в девятом классе (решение неравенств с параметром первой степени с одной неизвестной).

Цель:

применить алгоритмический метод при формировании умений и навыков в решении линейных неравенствах с параметрами.

Задачи:

· расширить кругозор учащихся;

· воспитание внимания, аккуратности, самостоятельности;

· осуществление взаимосвязи теории и практики;

· развитие памяти, логического мышления.

Решение задач с параметрами всегда вызывает большие трудности у учащихся. Причём часто учащиеся испытывают психологические трудности, «боятся» таких задач, так как не видят связи в их решении с решениями линейных неравенств с одной переменной.

Изучение линейных неравенств с параметром первой степени с одной неизвестной не возможно без умения решать линейные неравенства с одной переменной. Так как факультатив проводился в 9 классе, а линейные неравенства изучались в восьмом классе, то возникла необходимость актуализировать знания по решению линейных неравенств, вспомнить этапы их решения. Ученикам можно предложить следующее задание.

Решите неравенство 2(х+5)-3?4+3х

Все решают у себя в тетрадях, а один ученик решает у доски. Запись ведёт в два столбика. Решение в одном столбика, а в другом записывают пояснения к своим действиям.

2х+7?4+3х Раскрыли скобки в обеих частях неравенства

2х-3х?4-2 Перенесли слагаемые, содержащие переменную в одну

часть, а не содержащую в другую.

-х?2 Привели подобные члены в каждой части.

х?-2 Разделили обе части неравенства на коэффициент при

переменной (учитывая его знак !).

Отметили соответствующие промежутки на

координатной прямой.

х(-?;-2] Записали числовой промежуток

После того как повторили этапы решения линейных неравенств с одной переменной, учитель предлагает на доске подробный разбор решения неравенства с параметром. Затем ученики вместе с учителем формулируют алгоритм решения линейных неравенств с параметром.

Пример 1. Рассмотрим решение неравенства (а-4)•х<12

Чтобы найти х, обе части неравенства хочется разделить на (а-4). Однако теперь важно положительно, отрицательно или равно нулю выражение (а-4).

Определим знак выражения

Рассмотрим три случая:

a) а-4=0

b) а-4>0

c) а-4<0

1)если а-4=0а=4, то неравенство примет вид 0х<12, которое справедливо для всех хR

2) a-4>0 a>4, то разделим обе части неравенства на положительное выражение (а-4), не меняя знак неравенства, получим х > (используем свойство числового неравенства).

3) a-4<0a<4, то разделив обе части неравенства на отрицательное выражение и поменяв знак неравенства, получим х<.

Ответ:

если а=4, то х R;

если а>4, то х >;

если а<4, то х<.

Таким образом, после разобранного примера учитель формулирует алгоритм, опираясь на знания и умения, учащихся о решении линейных неравенств с одной переменной.

1. Раскрыть скобки в обеих частях неравенства (если есть дробные коэффициенты, то неравенство освободить от дробей).

2. Перенести слагаемые, содержащие переменную в одну часть, а не содержащие в другую.

3. Привести подобные члены в каждой части и получить один из 4 видов неравенств А(а)х<B(a) (**) , А(а)х?B(a), А(а)х>B(a), А(а)х?B(a), где х- переменная, А(а) и В(а) - функции параметра а.

4. Рассмотреть три случая:

1) Найти а, при которых А(а)=0, подставить в неравенство(**) вместо параметра а найденные решения и решить соответствующие неравенства.

2) Найти а, при которых А(а)>0, разделить неравенство(**) на А(а), не меняя его знак.

3) Найти а, при которых А(а)<0, разделить неравенство(**) на А(а), поменяв его знак.

5. Записать ответ.

Пример 2. решить неравенство

3-а•х ? х х+а•х?3 х•(1+а)?3

1) 1+а=0а=-1

Подставляем в неравенство 0•х?3, хR.

2) 1+а>0а>-1

х?

3) 1+а<0а<-1

x?

Ответ: При а=-1, то хR;

а>-1, то х ? ;

а<-1, то x ? .

Пример 3.

х•а2 ? а+хх• (а2-1) ? а

1) а2-1=0(а-1)(а+1)=0 а=1 или а=-1

а = 1; а = -1; х•0 ? 1 неверно

2) а2-1>0 а>1 или a<1, то x ?

3) а2-1>0 a, то x

Ответ: а=1, то хR;

а= -1, то нет решения;

, то x ?;

, то x .

Пример 4.

2а•(а-2) •х а-2

1) 2а•(а-2)=0 а=0 или а=2

а=0 х•0-2 верно

а=2 х•00 неверно

2) 2а•(а-2)>0 а,

то х

3) 2а•(а-2)<0 , то х

Ответ:

а=0, то хR;

а=2, то нет решения;

а, то х;

, то х.

Пример 5.

(а2-9) •ха+3

1) а2-9=0

а=3 и а=-3

а=3 0х6 верно;

а=-3 0х0 верно;

2) ;

3) ;

Ответ:

а=3 , а=-3 то хR;

, то;

, то ;

Пример 6.

а2х-а •х > a-1x• (a2-a) > a-1x•(a• [a-1]) > a-1

1) a• [a-1]=0a=0 и а=1

а=0 0•х>-1 верно

а=1 0•х>0 неверно

2); х>

3)а; х<

Ответ:

а=0, то хR;

а=1, то нет решения;

a, то х>;

, то х<.

Пример 7.

а2•х+4а•х-а-4?0

Ответ:

а=0 , а=-4 то хR;

, то;

, то .

Пример 8.

Ответ:

a<-2 а=2, то нет решения;

а, то х < ;

, то х>.

Примеры для самостоятельного решения:

1)2•а•х+5>а+10•x;

2)a•x+x+1 <0;

3)x+1?a•x+a2;

4)a•x+16?a2-4•x;

5)m•x>1+3•x;

6);

7);

8) (x-1) • (a2-1)>5-4•a;

9)b-3•b+4•b•x<4•b+12•x;

Выводы:

Факультатив “Решение неравенств с параметром первой степени с одной неизвестной” был проведён в 9 классе в школе №52 г. Кирова. Цель данного факультатива была достигнута. Применение алгоритмического метода позволило сделать изложение данной темы более доступным, учащиеся научились решать линейные неравенства с параметром осознанно.

Заключение

В ходе исследования были решены следующие задачи:

1) Изучена учебно-методическая литература по применению алгоритмического метода в школе;

2) Рассмотрены следующие вопросы, связанные с алгоритмическим методом: история возникновения алгоритма; определение алгоритма, его свойства, основные этапы алгоритмического процесса и классификация алгоритмов.

3) Разработана методика формирования алгоритмов “Решение алгебраических неравенств 1 и 2 степени с одним неизвестным”.

4) Показано как алгоритмический метод может применяться при решении линейных неравенств с параметром на факультативном занятии.

Литература

1. Алгебра: Учеб. Для 7 кл. / Алимов Ш.А., Ю.М. Колягин, Ю.В. Сидоров и др - М: Просвещение, 1999.

2. Алгебра: Учеб. Для 7 кл. общеобразовательных учреждений / Под редакцией С.А. Теляковского - М: Просвещение, 2002.

3. Алгебра: Учеб. Для 8 кл. / Алимов Ш.А. ., Ю.М. Колягин, Ю.В.Сидоров и др - М: Просвещение, 1991.

4. Алгебра: Учеб. Для 8 кл. общеобразовательных учреждений / Под редакцией С.А. Теляковского - М: Просвещение, 1996.

5. Алгебра: Учеб. Для 9 кл. / Алимов Ш.А. ., Ю.М. Колягин, Ю.В.Сидоров и др - М: Просвещение, 1992.

6. 4. Алгебра.8 класс./Под ред. Виленкина Н.Я.- М: Просвещение, 1997.

7. 5.Алгебра.9 класс./Под ред. Теляковского С.А.- М: Просвещение, 1994.

8. 6.Алгебра в 8 кл: Методическое пособие для учителей - М: Просвещение, 1977.

9. 7.Алгебра в 9 кл: Методическое пособие для учителей - М: Просвещение, 1978.

10. Бочарова О. Урок применения свойств линейных неравенств с одной переменной. // Математика в школе - 2002 - №7 - с. 40 - 42.

11. Виленкин Н.Я., Жохов В.И., Чесноков А.И. Математика: Учебник для 5 класса.- М: Мнемозина, 1999.

12. Галицкий М.Л., Гольдман А.Н., Завич Л.И. Курс алгебры 8-го класса в задачах- Львов: Журнал «Квантор», 1991.

13. Горбачёв В.И. Общие методы решения уравнения и неравенства с параметрами не выше 2 степени. // Математика в школе - 2000 - №2 - с. 61-68.

14. Башмаков М.И. Уравнения и неравенства - М: Наука, 1971.

15. Богушевский К.С., Сикорский К.Л. Сборник задач по математике для повторения.: Пособие для учителей 5-8 классов средней школы -М: Учпедгиз, 1955.

16. Варпаховский К.М. Элементы теории алгоритмов.- М., 1997.

17. Горнштейн П.И., Полонский В.Б., Якир М.С. Задачи с параметрами. - Киев

18. Ефремов Д.Н. Алгоритмы.- С.-Петербург, 1993.

19. Задачи по математике: Уравнения и неравенства: Справочное пособие. /Вавилов В.В. -М: Наука, 1988.

20. Здоровенко М.Ю.

21. Косовский М.А. Основы теории элементарных алгоритмов. - М.: 1987.

22. Королева Т. Математический тренажёр по алгебре для 7- 9 классов. // Математика в школе - 2001 - №8 - с.12-30.

23. Коровкин П.П. Неравенства М: Гос. изд-во технтко-теоретич. лит., 1951.

24. Кузнецова Л. Методические указания к теме “Неравенства ” // Математика в школе - 2002 - №6 - с.22-32.

25. Кривоногов В. Квадратные неравенства и уравнения. //Математика - 2002 - №3 (16-22 января) - с.15-19.

26. Лабораторные и практические работы по методике преподавания математики. /Под ред. Лященко Е.И. - М: Просвещение,1988.

27. Ланда Л.Н. Алгоритмизация в обучении.- М.: Просвещение, 1966.

28. Математика. Арифметика. Алгебра. Анализ данных 8 кл: учебник для общеобразовательных учебных заведений. / Под редакцией Г.В. Дорофеева - М: Дрофа, 1998.

29. Математика. Арифметика. Алгебра. Анализ данных 9 кл: Учебник для общеобразовательных учебных заведений. / Под редакцией Г.В. Дорофеева - М: Дрофа, 1998.

30. Математика: Учебник для 5 класса/ Под ред. Дорофеева Г.В., Шарыгина И.Ф. - М.: Просвещение, 1994.

31. Методика преподавания математики в средней школе. /Под ред. Мишина В.И. - М.: Просвещение 1987. Талочкин П.Б. Неравенства и уравнения. - М.: Просвещение, 1970.

32. Мордкович А.Г. Алгебра 8 кл. : Задачник для общеобразовательных учреждений. - М.: Мнемозина , 2001.

33. Мордкович А.Г. и др. Алгебра 8 кл: Учебник для общеобразовательных учреждений - М: Мнемозина, 2002.

34. Мордкович А.Г. и др. Алгебра 9 кл: Задачник для общеобразовательных учреждений - М: Мнемозина, 2000.

35. Мордкович А.Г. и др. Алгебра 9 кл: Учебник для общеобразовательных учреждений - М: Мнемозина, 2000.

36.Мордкович А.Г. Алгебра: Методическое пособие для учителей.- М: Мнемозина, 1997.

37. Невяжский Г.Л. Неравенства. : Методическое пособие для учителей. - М., 1997.

38. Психология. / Под ред. Ковалёва Л.И., Степанова М.П., Шабалина Г.Т.,

Талочкин П.Б. Неравенства и уравнения. - М.: Просвещение, 1970

39. Симонов А. Дидактические материалы для 8-9 классов с углублённым изучением математики. // Математика в школе - 2002 - №7 - с.5-10.

40. Факультативный курс по математике: Учебное пособие для 7-9 классов средней щколы /сост. Никольская И.Л. - М.: Просвещение, 1991.

Array

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.