Класс разделён на четыре группы. Каждой группе учитель даёт задание - решить предложенное неравенство (1 группе - под буквой а; 2 группе под буквой b и так далее). Порядок выполнения действий описан ниже.
a) x•(x+1)+2•(x2+3x)+6 > x•(3•x+5)-x+9
b) 7•t• (2•t-3) -18 ? (14•t+3) • (t+2)
c) 3•x• (2•x-5)+4 ? x•(6•x-9)-2• (3•x+3)
d) (2•y+1)2+2 < 2•y• (2•y+5)-6•y+5
Первый шаг: упростите выражение в каждой части неравенства.
Второй шаг: перенесите члены неравенства содержащие переменную, в левую часть, а числа - в правую часть с изменением знака на противоположный (на основании какого свойства числовых неравенств мы это можем сделать?).
Третий шаг: приведите подобные члены.
Четвёртый шаг: разделите обе части неравенства на коэффициент при переменной (используются свойства равносильных неравенств), получите простейшие неравенства:
a) x>1;
b) t<-16,1;
c) нет решений;
d) у - любое решение;
Пятый шаг: отметьте решения на координатной прямой.
Анализ решения позволяет записать алгоритм решения линейного неравенства 1 степени с одной неизвестной.
1. Раскрыть скобки в обеих частях неравенства (если есть дробные коэффициенты, то неравенство освободить от дробей).
2. Перенести слагаемые, содержащие переменную в одну часть, а не содержащие в другую.
3. Привести подобные члены в каждой части.
4. Разделить обе части неравенства на коэффициент при переменной (с учётом свойств равносильности при а?0).
5. Записать ответ в виде простейшего неравенства.
6. Отметить соответствующие промежутки на координатной прямой.
7. Записать числовой промежуток.
Алгоритм решения неравенства вида ax>b, который является составной частью приведённого выше алгоритма, записывается в виде схемы (рис. 1).
Рассмотрим работу с алгоритмом решения линейных неравенств поэтапно. На первом этапе полезно актуализировать следующие знания: тождественные преобразования рациональных выражений, свойства числовых неравенств, изображение промежутков на координатной прямой, нахождение пересечения и объединения промежутков. После этого проводим описанную выше работу и формулируем сам алгоритм. На втором этапе отрабатываем отдельные операции, входящие в алгоритм (приведение подобных членов, решение неравенств при а > или ? 0) и их последовательность.
да нет
да
Третий этап может быть очень разнообразным. Всё зависит от уровня знаний и умений учащихся. Но в любом случае надо начать с элементарных задач, а уже после формирования навыка решения линейных неравенств первой степени с одной неизвестной у учащихся.
4) Запишите в виде неравенства утверждения
· сумма чисел х и 17 больше 18;
· разность чисел 13 и х меньше 2;
· произведение чисел 17 и х не меньше 3;
· удвоенная сумма чисел х и (-3) не больше 2;
· полусумма чисел х и 3 не больше их произведения;
· удвоенное произведение чисел х и (-4) не меньше их разности
5) Заполните пустые места таблицы
Неравенство
Изображение решения
Запись решения
3<x<6
(3,6)
-2?x?4
…
7<x?10
…;10]
…x<5
[-3;…
[4;+?)
-4<x…3
Д>0
Д<0
Д=0
Количество корней
(корни разбивают числовую ось на промежутки)
Изобразите схематично параболу
Страницы: 1, 2, 3, 4, 5