Рефераты. Применение алгоритмического метода при изучении неравенств

Формирование алгоритмического процесса идёт более успешно, когда эти различные пути соединяются.

При формировании алгоритма выделяют три основных этапа [26]:

I. Введение алгоритма. Этот этап подразумевает следующее:

1) Актуализация знаний, необходимых для введения и обоснования алгоритма.

2) Открытие алгоритма учащимися под руководством учителя.

3) Формулировка алгоритма.

II.Усвоение

Отработка отдельных операций, входящих в алгоритм и усвоение их последовательности.

III.Применение алгоритма.

Отработка алгоритма в знакомой и незнакомой ситуациях.

Выделенные этапы будут проиллюстрированы во второй главе работы.

Таким образом, применение алгоритмического метода при обучении математике устраняет главный недостаток учебников: процесс мыслительной деятельности расчленяется на определённое число достаточно простых элементарных операций, усвоения и понимания которых для учащихся будет менее трудоёмко.

Часть 2

1 Особенности изучения темы «Неравенства» в школьном курсе математики

Материал, связанный с неравенствами, составляет значительную часть школьного курса математики. Неравенства используются в различных разделах математики, при решении важных прикладных задач.

Неравенства сами по себе представляют интерес для изучения, так как именно с их помощью на символьном языке записываются важные задачи познания реальной действительности. Как в самой математике, так и в её приложениях с неравенствами приходится сталкиваться не менее часто, чем с уравнениями. Тема “Неравенства” связана со всеми темами курса алгебры. Например, неравенства используются при изучении свойств функции (нахождение промежутков знакопостоянства функции, определение монотонности и др.)

До прихода в школу дети приобретают опыт в обращении с понятиями «больше», «меньше», «не равны». Поэтому пропедевтическое изучение неравенств должно осуществляться совместно с изучением уравнений.

С соотношениями «больше», «меньше» между числами и знаками этих отношений дети знакомятся уже в 1 классе при изучении чисел первого десятка. В начальной школе дети должны научиться сравнивать уже простейшие числовые выражения, например, такие как: а+3 и а+1.

В начальной школе начинается и решение простейших неравенств, хотя термины «решение неравенства» и «решить неравенство» ещё не вводится. Приведём пример задания, предлагаемого в начальной школе.

Записать несколько значений букв, при которых верно неравенство х<9.

В 5 классе изучается сравнение натуральных, десятичных дробей.

Например, сравните многозначные натуральные числа 3421 и1803

Результат сравнения записывается в виде неравенства с помощью

Знаков « > » и « < » .

В 6 классе для установления отношений «больше», «меньше» на множестве рациональных чисел вводится понятие модуля числа. В связи с этим рассматриваются неравенства вида |х|?а, |х-b|<b, |х-a|?b. Их решения осуществляются с помощью числовой оси.

Тема “Неравенства” систематически изучается в 7-8 классах. В неё включены следующие разделы: «Числовые неравенства и их свойства», «Почленное сложение и умножение числовых неравенств», «Линейное неравенство с одной переменной», «Система линейных неравенств с одной переменной».

В 8 классе начинается изучение различных способов доказательства неравенств. С целью повышения доступности материала рассматриваются главным образом такие доказательства, которые ограничиваются методом сравнения с нулём разности левой и правой частей неравенств. В связи с решением линейных неравенств с одной переменной даётся понятие о числовых промежутках, появляются и вводятся соответствующие обозначения. При решении неравенств используются свойства равносильных неравенств, которые разъясняются на конкретных примерах. Особое внимание надо уделять отработке умения решать простейшие неравенства вида ах<b.

Формирование умений решать неравенства вида ах2+вх+с>0, где а?0, осуществляется в 9 классе с опорой на сведения о графике квадратичной функции. Здесь учащиеся знакомятся с методом интервалов. Решают этим методом дробно - рациональные неравенства.

Следует особо остановиться на вопросе о равносильности неравенств, так как некоторые свойства числовых неравенств нельзя бездумно переносить на неравенства, содержащие переменную. Известно, что при добавлении к обеим частям числового неравенства любого числа, получаем новое неравенство, равносильное исходному. Но при добавлении к обеим частям неравенства какого - нибудь выражения может получиться неравенство неравносильное данному.

При переходе к функциональным неравенствам учащиеся сталкиваются с двумя важными аспектами математического образования.

Первый аспект состоит в геометрическом истолковании неравенств, которое делает все рассуждения предельно ясными. Однако нельзя забывать, что заключение делается не на основе чертежа, а путём анализа алгебраического выражения.

Второй аспект сводится к различным приёмам доказательства. Самый главный из них - рассмотрение разности между двумя частями неравенства. Но существуют и такие методы, как сведение доказываемого неравенства к равносильному, которое осуществляется заменой данных выражений обратным им, использование метода от противного и метода математической индукции.

Таким образом, неравенства являются наиболее компактным, легко обозреваемым и доступным для учащихся материалом, на котором отрабатываются сложнейшие математические методы. Отметим ряд особенностей изучения темы:

1) Как правило, навыки решения неравенств формируются на более низком уровне, чем навыки решения уравнений соответствующих классов, так как теория неравенств сложнее теорий уравнений (при выполнении одного и того же числа упражнений техника решения неравенств какого - либо класса будет ниже, чем уравнений соответствующего класса; следовательно, если имеется необходимость формирования прочных навыков решения неравенств, то для этого требуется большее число заданий).

2) Большинство приёмов решения неравенств состоит в переходе от данного неравенства к уравнению и последующем переходе от найденных корней уравнения к множеству решений исходного неравенства (темы, относящиеся к неравенствам, расположены после тем, относящихся к соответствующим классам уравнений).

3) В изучении неравенств большую роль играют наглядно - графические средства (изучение неравенств зависит от качества изучения функциональной линии школьного курса - построение графиков и графическое исследование функций).

Рассмотрим введение алгоритма решения неравенств первой и второй степени с одним неизвестным.

§2 Формирование алгоритма « Решение неравенств первой степени с одной неизвестной»

Цель:

· выработать умение решать неравенства первой степени с одним неизвестным и системы линейных неравенств.

Рассмотрению линейных неравенств и их систем предшествует детальное изучение числовых неравенств и их свойств.

В отличие от свойств числовых равенств, с которыми учащиеся знакомы ещё с начальной школы, свойства числовых неравенств они изучают практически впервые. Свойства формулируются в общем виде и достаточно строго доказываются. Это часто вызывает дополнительные трудности у учащихся, так как они здесь впервые в алгебре встречаются с теоремами.

Алгоритм решения неравенства с неизвестным сложнее, чем алгоритм решения уравнений, так как на последнем этапе решения приходится учитывать знак коэффициента при неизвестном. Кроме того, в отличие от уравнения неравенство имеет не отдельные решения, а, как правило, множество решений.

Решение систем неравенств с одним неизвестным тесно связано с числовыми промежутками, с которыми учащиеся знакомятся впервые. Изображению числовых промежутков на координатной прямой нужно уделить особое внимание. В частности, можно предложить следующий алгоритм, который позволит учащимся правильно отмечать промежутки, соответствующие неравенствам (простым или двойным) на координатной прямой.

Например, дано неравенство а ? x < b

Нужно отметить соответствующий промежуток на координатной прямой. Для этого воспользуемся алгоритмом.

1. Если знак первого неравенства нестрогий, то точка будет закрашенной > ставим точку на координатную прямую

( ? ( ? )> * > отмечаем точку).

Если знак первого неравенства строгий, то точка будет выколотая> отмечаем точку на координатной прямой

( < ( > )> п >отмечаем точку)

2. Аналогично для второго знака неравенства (если неравенство двойное).

3. Отмечаем область согласно знаку:

-если знак меньше, то отмечаем все точки лежащие левее данной точки (штриховкой).

-если знак больше, то отмечаем все точки лежащее правее относительно этой точки (штриховкой).

4. Выделяем общую область (двойная штриховка, это для двойных неравенств). Упражнения на каждый этап работы с этим алгоритмом приведены во второй части работы (практическая часть).

Данный алгоритм используют как составную часть при решении неравенств первой степени, системы неравенств, нахождения области определения и области значений.

В результате изучения темы учащиеся должны:

· знать определения неравенства и основные свойства неравенств.

· уметь решать неравенства с неизвестным и их системы.

Специфические действия:

a) составление разности выражений стоящих в левых и правых частях неравенств;

b) выполнение тождественных преобразований выражений;

c) установление знака разности выражений;

d) подведение под понятия «больше» и «меньше»;

e) изображение промежутка, заданного его концами, на координатной прямой и запись промежутка «на языке» неравенств;

f) алгоритм решения линейных неравенств с одной переменной;

g) определения границ выражения, если переменные, входящие в него, заданы своими границами.

«Ядерным» материалом темы является :

· Понятия: «< » , « > » неравенство, решение неравенства, решение системы неравенств, равносильных неравенств;

· Свойства числовых неравенств, равносильных неравенств;

· Операции над числовыми неравенствами ;

· Алгоритм решения неравенства с одной переменной и решения системы неравенств;

Алгоритм решения линейных неравенств с одной переменной и решения систем линейных неравенств предлагается ввести индуктивно на конкретных примерах, анализ которых позволяет учителю вместе с учащимися, сделать обобщение, сформулировать алгоритм.

Рассмотрим формирование алгоритма решения неравенства с одной переменной.

Для построения алгоритма как результата теоретического обобщения решения задач может быть эффективно использована групповая форма работы на первом этапе построения алгоритма.

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.