Рефераты. Применение алгоритмического метода при изучении неравенств

Открытие и формулирование алгоритмов стало одной из важнейших задач математики как науки. В процессе своего развития она стремилась искать общие алгоритмы решения задач, которые позволяли бы единым способом, (то есть посредством одной и той же системы операций) решать всё более и более широкие классы задач.

Самым же первым алгоритмом, с которым знакомится ребёнок, является, вероятнее всего, счёт на пальцах.

В начальной школе дети узнают алгоритмы арифметических действий: сложение столбиком, деление углом и другое.

С реализацией алгоритма, непосредственно связано умение, приложить его к конкретным исходным данным решаемой задачи. Такое применение называется алгоритмическим процессом. Он расчленяется на ряд самостоятельных этапов, каждый из которых предназначен для перевода данных из одного состояния в другое. Выделим эти этапы.

Этапы алгоритмического процесса.

Постановка задачи (устанавливается цель решения задачи, раскрывается её содержания, выявляются её факторы, оказывающие существенное влияние на ход вычислений или конечный результат).

I. Построение модели задачи (до сих пор это остаётся в большей степени делом искусства, чем науки).

II. Разработка алгоритма.

§ выделение автономных этапов вычислительного процесса,

§ формальная запись содержания каждого из них,

§ назначение порядка выполнения этапов,

§ проверка правильности выбранного алгоритма.

§4 Свойства алгоритма.

Алгоритм можно понимать и следующим образом, это точное предписание о том, какие действия и в каком порядке необходимо выполнять, чтобы решить любую задачу из данного класса однотипных задач.[16]

Объясним смысл этих слов

- что такое «точное предписание»?

Это означает, что предписание, задающее алгоритм, должно быть составлено так, чтобы его исполнение было однозначно осуществимо и не требовало никаких свободно принимаемых (исполнителем) решений, чтобы были однозначно определены последовательность действий, и результат. Кроме того, исполнителю должно быть ясно, какое из предписаний должно выполняться на следующем шаге. Это свойство называется определённостью или детерминированностью.

Например: В предписании, которым определяется ход некоторой игры, имеются такие указания:

1) Подойди к книжной полке, на которой стоят три книги.

2) Возьми книгу, стоящую в середине.

3) Открой её на странице, номер которой оканчивается цифрой 5.

4) Найди на этой странице первое слово.

5) Отметь в нём первую букву.

6) Если эта буква принадлежит к первой половине алфавите, то выполни с книгой действие А и на этом закончи свои действия.

7) Если эта буква принадлежит второй половине алфавита, то выполни с книгой действие В и закончи свои действия.

Если допустить, что все операции, указанные в этом предписании, являются достаточно элементарными и люди которым они адресованы, умеют эти операции производить, то это предписание всё-равно не будет алгоритмом, потому что в нём есть одно неопределённое условие - „открой книгу на странице, номер которой оканчивается цифрой 5 ”.

Процесс деятельности в целом, таким образом, также оказывается не полностью детерминированным, третье указание обладает неопределённостью, так как может быть выполнено по-разному.

- что означает «решить любую задачу из данного класса однотипных задач»?

Каждый алгоритм предназначен для решения не одной единственной задачи, а любой задачи из некоторого бесконечного класса однотипных задач. Алгоритм является единым методом, позволяющим по любому исходному объекту из определённого бесконечного множества объектов получить искомый результат. В этом состоит свойство массовости. Так, например, алгоритм деления чисел, применяем не только к числам 243 и 3 или 150 и 5, а к любым натуральным числом.

- «решить задачу» означает решить её за конечное число шагов. Это свойство называется результативность. Оно заключается в том, что алгоритм всегда направлен на получение некоторого искомого результата, который при надлежащих исходных данных всегда получается. Рассмотрим, например, алгоритм решения квадратного уравнения при помощи формулы корней.

a·x2+b·x+c=0 , где а?0, b и c- любые действительные числа.

1. Вычислите дискриминанта по формуле Д= b2-4·a·c;

2. Если Д<0, то уравнение не имеет корней;

3. Если Д=0, то уравнение имеет два одинаковых корня х1=х2=;

4. Если Д>0, то уравнение имеет два различных корня х1 =

и второй корень х2 =.

При соответствующих исходных данных любой ученик при верном выполнении шагов алгоритма получит искомый результат ( a = 1, b = 6, c = 5), то x1= -5, x2 = -1). Очевидно, что выполнение алгоритма может обрываться на втором шаге, если Д < 0, то мы делаем вывод, что уравнение с такими данными не имеет корней (например: а = 7, b = 5,c = 3,).

- в любом алгоритме для каждого шага (кроме последнего) можно указать единственный (при данном выборе исходных объектов), непосредственно следующий за ним шаг, то есть такой, что между ними нет других шагов. Поэтому говорят, что алгоритм обладает свойством дискретности.

Таким образом, из характеристики основных свойств алгоритма ясно, что алгоритм всегда представляет собой предписание о выполнении некоторой системы операций, но не всякое предписание о выполнении операций является алгоритмом. Алгоритм считается заданным, если однозначным образом указаны те действия, которые на каждом шаге должны быть произведены над объектом при всех его возможных состояниях, чтобы перевести его в требуемое состояние. При этом считается, что все возможные состояния объекта известны и предусматривают однозначные реакции решающего задачу на каждое из них [16].

В дальнейшем в нашей работе под алгоритмом будем понимать любое предписание, удовлетворяющее свойствам алгоритма.

§ 5 Классификация алгоритмов.

Как и любое множество объектов, множество алгоритмов, можно классифицировать по различным основаниям. Для того чтобы выяснить, как обучить алгоритму, необходимо представлять цель применения данного алгоритма: преобразование объекта или его распознавание.

В курсе алгебры 7-9 классов большинство алгоритмов - вычислительные, а, следовательно, связаны с преобразованием тех или иных математических объектов.

Задача распознавания всегда является частной по отношению к задаче преобразования.

Таким образом, алгоритмы с точки зрения цели, достигаемой с их помощью, можно разделить на 2 типа: алгоритм преобразования и алгоритм распознавания. При этом алгоритмы преобразования включают в себя операции распознавания, а алгоритмы распознавания могут включать в себя операции преобразования.

Как отличить такие алгоритмы друг от друга? Это можно сделать лишь по характеру цели, которая ставится в процессе решения задачи с помощью алгоритма, по заключительному результату, получающемуся в итоге применения алгоритма.

Если таким результатом является суждение о принадлежности исходного объекта к некоторому классу, то данный алгоритм в целом является алгоритмом распознавания, в противном случае алгоритм представляет собой алгоритм преобразования.

Пример алгоритма распознавания посредством преобразования можно привести из области арифметики:

Например, для того чтобы определить (распознавать), делится ли некоторое число на 9, задача преобразуется: ищется сумма цифр числа. Чтобы определить число корней уравнения 5х2+6х+1=0 преобразуем задачу: найдём дискриминант уравнения. Д=36-20=16 Так как 16>0, то уравнение имеет 2 различных корня.

В любом процессе распознавания, который осуществляется путём преобразования, то есть с помощью некоторой конструктивной деятельности, важнейшей операцией является сопоставление преобразованного объекта с некоторыми признаками, заданными определением или каким-либо другим теоретическим утверждением.

Следует отметить, что в школьном курсе алгебры алгоритмам распознавания отводится гораздо меньше внимания, чем алгоритмам преобразования. Такой подход нецелесообразен. Подавляющее большинство действий человека применимо не просто к отдельным конкретным предметам, а к предметам как к элементам некоторых классов предметов, и поэтому гораздо целесообразнее вырабатывать формы поведения применительно к объектам как представителям целых классов. Только в этом случае появляется возможность переносить поведение с одного предмета на другой; не проходя каждый раз специальной стадии обучения. Но чтобы такой перенос поведения стал возможен, необходимо распознать, к какому классу принадлежит объект.

Одно ясно, что не осуществив процесса распознавания или распознав предмет ошибочно, учащиеся не могут осуществить его преобразование или оно будет неправильным.

Так, например, в методике математики выделяют три типа задач на проценты:

I. Нахождение процента от числа;

II. Нахождение числа по его проценту;

III. Нахождение процентного отношения;

Решение всех трёх типов задач можно свести работе с формулой аb=c, где

а - «всё», b - « процент, выраженный в десятичной дроби», c - «часть». В задачах I типа известны переменные a и b, и нужно найти с. В задачах II типа известны - b и с, нужно найти а. Следовательно, в задачах третьего типа известны - а и с, и нужно найти b. Для того, чтобы решить задачу на проценты, необходимо распознать к какому из трех перечисленных типов она относится.

Специальное обучение процессам распознавания, преобразования и выяснения возможностей их алгоритмизации выступает, поэтому как важная задача, решение которой имеет существенное значение для практики и теории обучения.

§ 6 Этапы изучения алгоритма в школе.

Следует различать 2 смысла, в котором может употребляться выражение «алгоритмизация обучения».

1. Под алгоритмизацией обучения понимают алгоритмизацию деятельности учителя; составление и использование алгоритмов обучения.

2. Алгоритмизация деятельности учащихся, то есть не что иное, как обучение алгоритмам.

Открытие алгоритмов решения математических задач привело к коренному изменению в практике обучения математике: алгоритмам стали учить, и это во много раз облегчило и ускорило овладение этим предметом. В то же время учебный процесс ни в коем случае не должен и не может быть сведён только к обучению алгоритмам.

В обучении учащихся алгоритмам можно идти разными путями:

1) Давать учащимся алгоритм в готовом виде. Такой путь не является лучшим, но позволяет экономить время.

2) Гораздо более ценно, когда ученик открывает соответствующие алгоритмы сам или с помощью учителя.

3) Подбор учителем таких упражнений и задач в ходе решения, которых у учащихся будут формироваться нужные системы операций.

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.