Рефераты. Методика изучения многогранников в школьном курсе стереометрии

Указание. Перед решением задачи следует повто-рить и затем записать на доске формулы

NC = , ON = , OC =

7. Используя рис. 4.13, на котором изображена пра-вильная четырехугольная пирамида, заполните пу-стые ячейки в табл. 3 и табл. 4.

Таблица 3

а

k

h

b

б

1

2

2

2

45°

3

6

3

4

4

30°

Таблица 4

а

b

h

k

в

1

4

60°

2

2

45°

3

8

4

4

4

8

Указание. Перед решением этой задачи следует повторить и затем записать на доске формулы

AC = , ON = , OC =

8. Площадь боковой поверхности пирамиды, в основании которой лежит трапеция, равна 2Q. Бо-ковые грани пирамиды составляют с плоскостью основания равные углы. Найдите сумму площадей боковых граней, проходящих через непараллельные стороны трапеции.

Ответ: Q.

9. В основании пирамиды лежит ромб. Боковые грани пирамиды образуют с основанием равные углы. Площадь одной из боковых граней равна Q. Найдите площадь боковой поверхности пирамиды.

Ответ: 4Q.

10. Вычислите площадь боковой поверхности правильной пятиугольной пирамиды, если извест-но, что ее боковое ребро. равное а. со стороной основания составляет угол 60°

Ответ:

11. Дана правильная треугольная пирамида, у ко-торой а - сторона основания, k - апофема, P - периметр основания, S1 - площадь боковой поверхности, S - площадь пирамиды. Заполните табл. 5.

Таблица 5

а

k

Р

S1

S

1

5

75

2

24

24

3

18

297

4

45

315

5

198

202

Указание. Задачу следует решать по заранее заготовленному чертежу.

Перед решением необходимо повторить и запи-сать на доске формулы:

, P=3a, S=S1+S2 , S2= (S2 - площадь основания пирам иды.)

12. Дана правильная четырехугольная пирамида. у которой а - сторона основания, k - апофема, P - периметр основания, S1 - площадь боковой поверхности, S - площадь пирамиды.

Таблица 6

а

k

р

S,

S

I

6

12

2

13

689

3

16

288

4

44

396

5

352

416

Указание. Задачу следует решать по заранее заго-товленному чертежу.

Перед решением следует повторить и записать на доске формулы:

, P=4a, S=S1+S2 , S2=a2 (S2 - площадь основания пирамиды.)

2)Задачи на исследование.

1. Сколько вершин, ребер и граней имеет n-угольная пирамида?

Ответ: n + 1 вершин. n + 1 граней, 2п ребер.

2. Какое основание может иметь пирамида, у которой все ребра равны?

Решение. Плоские углы при вершине пира-миды равны 60°, так как каждая боковая грань - -равносторонний треугольник. Следовательно, бо-ковых граней меньше, чем 360°: 60° = 6. т.е. в основании может быть равносторонний треуголь-ник, квадрат или пятиугольник.

3. В каких пределах находится плоский угол б при вершине правильной n-угольной пирамиды. если n = 3, 4, 5, 6?

4. У треугольной пирамиды все боковые ребра равны. Может ли высота такой пирамиды находить-ся на одной из граней?

Ответ: может, если в основании прямоугольный треугольник.

5. Сравните термины: «правильная треугольная пирамида» и «правильный тетраэдр». Можно ли утверждать, что они определяют одно и то же?

6. Боковые ребра пирамиды равны. Может ли ее основанием быть: а) прямоугольная трапеция, б) ромб?

Ответ: а) не может, поскольку такую тра-пецию нельзя вписать в окружность; б) может только в случае, если осно-вание - квадрат.

7. При каком соотношении в правильной тре-угольной пирамиде между стороной основания а и боковым ребром b ее можно построить?

Ответ:

3)Задачи на доказательство.

1. Докажите, что число плоских углов в n-уголь-ной пирамиде делится на 4.

2. Если в правильной треугольной пирамиде высота Н равна стороне основания а, то боковые ребра составляют с плоскостью основания углы в 60°. Верно ли это утверждение?

Решение. Высота пирамиды проектируется в центр окружности радиуса R, описанной около основания, б - искомый угол,

tgб = = = , б=60°.

3. Доказать или опровергнуть утверждение: «если в пирамиде все ребра равны, то пирамида правиль-ная».

Решение. Основание пирамиды - правильный многоугольник. Так как боковые ребра равны, то вершина проектируется в центр основания, следо-вательно, пирамида - правильная.

4. Доказать, что сумма площадей проекций бо-ковых граней пирамиды на основание может быть больше площади основания.

Ответ: может, если высота пирамиды не

проходит через основание пирамиды.

5.. Сторона квадрата равна 10 см. Доказать, что нельзя, используя его в качестве основания, пост-роить правильную четырехугольную пирамиду с боковым ребром 7 см.

Решение. Половина диагонали квадрата является катетом в прямоугольном треугольнике, этот катет равен , а боковое ребро - гипо-тенуза - равно 7 см. Получается, что катет больше гипотенузы.

6. Доказать, что в правильной пирамиде угол наклона бокового ребра к плоскости основания б меньше угла наклона боковой грани к плоскости основания в.

4) Задачи на построение.

1. Постройте два изображения одной пирамиды, одно - имеющее наибольшее число видимых ре-бер, другое - наименьшее число видимых ребер.

Указание. Вид со стороны вершины, все ребра видимые. Вид со стороны основания, видны толь-ко ребра основания.

2. В правильной четырехугольной пирамиде (рис. 4.14) апофема образует с плоскостью основания угол 1. Обозначьте этот угол на рисунке.

3. На рис. 4.15 изображена пирамида РАВС, у кото-рой PH АВС, PK. ВС, TEРВС, Е PBC. Верен ли чертеж?

Решение. По условию PHАВС, PKВС, т.е. по теореме о трех перпендикулярах HK ВС, и PHK PBC. Так как, опять же по условию, TEРВС, то отрезок ТЕ либо параллелен плос-кости РНК, либо принадлежит ей. В любом случае чертеж неверен.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.