Рефераты. Исследования в современном управлении

В основе кибернетики лежит идея о возможности общего подхода к изучению процессов управления в системах различной природы. Сила данной идеи заключается в том, что оказалось возможным, кроме общих рассуждений методологического характера, предложить мощный математический аппарат для количественного и качественного описания процессов управления, а также использовать электронно-вычислительную технику для решения этих сложных задач. Таким общим подходом и является введение в кибернетику кардинального понятия информации.

 
 












В самом деле, вне зависимости от того, с какими объектами связаны процессы управления, они всегда протекают следующим образом. Некоторые чувствительные органы (например, органы чувств человека или измерительные приборы) воспринимают информацию о состоянии управляемого объекта.

Эта первичная информация передаётся по тем или иным каналам связи (нервная система человека, электропровода, телефонные и телеграфные линии и т.п.) к органу, задача которого состоит в том, чтобы принять решение на основе полученной информации или, другими словами, переработать информацию (человеческий мозг, управляющая вычислительная машина и т.д.).

Затем переработанная информация в виде сигнала управления используется для того, чтобы осуществить требуемое воздействие на управляемый объект. Следовательно, процессы управления связаны с получением, передачей, переработкой и использованием информации.

Вот почему можно дать развернутое определение кибернетики как отрасли знаний, занимающейся установлением общих принципов и законов управления объектами различной природы (живой организм, машина, общество и пр.) для достижения ими заданных целей на основе получения, передачи, переработки и использования информации.

Процессы получения информации, её хранения и передачи называются в кибернетике связью. Переработка воспринятой информации в сигналы, направляющие деятельность машин и организмов, называется управлением. Если машина или организм способны воспринимать и использовать информацию о результатах своей деятельности, то говорят, что они обладают обратной связью. Переработка информации, идущей по каналам обратной связи, в сигналы, корректирующие деятельность машин или организма, называется контролем (регулированием).

С появлением понятия информации классическое представление о мире (материя плюс энергия) должно уступить место другому представлению о мире, состоящим из энергии, материи и информации.

Информационный подход к процессам управления - первая особенность кибернетики.

Вторая особенность заключается в том, что с развитием кибернетики возросло значение дискретной формы представления информации.

Роль и значение дискретной формы представления информации обусловлены тремя основными причинами. Во-первых, современные ЭВМ оперируют с дискретной информацией. Во-вторых, изучение сложных систем , в первую очередь биологических и социальных, часто требует рассмотрения величин качественного характера, которые нельзя в обычном смысле измерить и выразить числом. Так, врачи различают три (а с градациями - пять) степени атеросклероза. А как выразить числом, скажем отношение того или иного (индивидуального) зрителя к пьесе или фильму? Подобные качественные характеристики прекрасно описываются дискретными сигналами в тех или иных абстрактных алфавитах (например, оценками по 5-ти бальной системе). Третья причина увеличения роли дискретной информации заключается в её универсальности. Действительно, всякая непрерывная информация, после её измерения с той или иной степенью точности, выражается конечной последовательностью цифр (с запятой или без), т.е. в дискретном виде.

Теория кодирования, раздел кибернетики, изучает формы представления информации в тех или иных алфавитах. Простой, но очень важный результат здесь заключается в возможности представления произвольной информации в любом алфавите, содержащем не менее двух букв. Таким образом, минимальным алфавитом, в котором можно записать дискретную информацию, служит двухбуквенный двоичный алфавит. Например, кодирование обычных букв и цифр двоичным алфавитом не что иное, как известный телеграфный код (азбука Морзе). Сигнал в двоичном алфавите - минимальная единица информации, своеобразный информационный атом, называемый битом.

Теория алгоритмов - аппарат описания преобразований дискретной информации. Под алгоритмом понимают любую конечную систему правил, позволяющую преобразовать выражения (последовательности слов) в каком-либо (абстрактном) алфавите в новые выражения в том же или другом алфавите. Указанные правила могут быть любой природы. Например, названия алгоритма заслуживает инструкция по составлению годового отчёта при условии, что она разработана настолько детально, что человеку, изучившему её, требуются только исходные данные.

Обычная словесная формулировка алгоритмов несовершенна ввиду присущей человеческим языкам неоднозначности. В результате одни и те же формулировки понимаются по-разному. Для точной, не допускающей никаких разночтений формулировки алгоритмов служат алгоритмические языки. При использовании алгоритмического языка для записи конкретного алгоритма получается программа для ЭВМ на данном алгоритмическом языке.

Третья особенность кибернетики - метод кибернетических моделей. Широкое использование дискретных форм представления информации позволило резко расширить класс изучаемых систем и успешно исследовать не только строгие количественные, но и приблизительные (качественные) взаимозависимости между элементами сложной системы благодаря введению принципиально нового метода научного анализа систем - математического моделирования.

До появления математического моделирования в распоряжении исследователей было фактически лишь два принципиально различных метода: экспериментальный и теоретический (аналитический). В первом случае эксперименты производились либо с самой системой, либо с её физической, реальной моделью. Во втором - требовалось решать, как правило, аналитически, уравнения, описывающие всю систему.

Математическое моделирование занимает промежуточное положение: нет необходимости строить реальную физическую модель системы, её заменяет математическая модель, которая может быть записана далее на алгоритмическом языке. Это позволяет не решать сложные математические задачи, а моделировать поведение системы с помощью машинной программы (программы для ЭВМ, представленной на алгоритмическом языке). Такой подход позволяет получить целостное впечатление о сложных системах, отдельные части которых изучаются различными людьми или науками. Так, человеческий организм, отдельные его части (системы кровообращения, пищеварения, нервная система, железы внутренней секреции и т.п.), хотя и тесно связаны между собой, исследуются разными специалистами.

Науки, изучающие тот или иной конкретный класс систем (физиология нервной системы, экономика и др.), в результате глубокого проникновения в природу систем и составляющих их элементов создают основу для построения математических моделей этих систем. Кибернетика дает методы и средства для точного описания и изучения моделей, позволяющих получить целостное впечатление об их поведении.

Использование ЭВМ и методов моделирования обеспечивает кибернетике массу приложений в самых различных науках. Кибернетические методы исследований привели к превращению ряда описательных наук в точные науки. Большое значение приобретает метод математического моделирования в экономической науке.

В вероятностном, статистическом подходе к процессам управления состоит четвертая особенность кибернетики. Указанная концепция во многом взята из статистической физики. Известно, что поведение газа в сосуде определяется случайным движением отдельных молекул. Аналогично при управлении, скажем, телефонным узлом считается, что вызовы на телефонные станции - случайные события во времени, так как каждый вызов связан с большим числом факторов, учесть которые не представляется возможным. Однако, найдя статистические характеристики случайных вызовов с помощью кибернетической модели массового обслуживания, удаётся сформулировать оптимальные законы управления телефонной сетью.

В кибернетике принято, что любой процесс управления подвержен случайным возмущающим воздействиям, это в одинаковой мере относится к системе управления производством и любой технической системе. В первом случае на производственный процесс оказывает влияние большое количество факторов (состояние оборудования, качество материала, своевременность доставки комплектующих изделий и пр.), учесть которые детерминированным образом невозможно. Поэтому считается, что на производственный процесс воздействуют случайные сигналы. В силу этого планирование работы предприятия может быть только вероятностным, и обсуждать выполнение плана к определённому сроку следует с какой-то вероятностью. То есть учет стохастичности экономической системы означает признание принципиальной невозможности предвидения каждого из отклонений в отдельности, но предполагает возможность с той или иной степенью оценить их вероятность.

Пятая особенность кибернетики вытекает из факта существования универсальных алгоритмических языков, которые обеспечили построение универсальных преобразователей информации, т.е. современных электронных вычислительных машин (ЭВМ).

ЭВМ открывают неограниченные возможности автоматизации сложных процессов умственной деятельности человека. Они стали основой создания сложных автоматизированных информационно-аналитических и информационно-управляющих систем, важнейшим практическим средством и орудием исследования в кибернетике. При этом нет необходимости разрабатывать новые технические средства, реализующие те или иные алгоритмы управления для нового процесса. Достаточно познать и точно описать законы, которые управляют рассматриваемым процессом, и запрограммировать их на каком-либо из универсальных алгоритмических языков, понятных современной ЭВМ.

С кибернетикой Винера связаны такие продвижения в развитии системных представлений как:

·        типизация моделей систем;

·        выявление особого значения обратных связей в системе;

·        подчеркивание принципа оптимальности в управлении и синтезе систем;

·        осознание информации как всеобщего свойства материи и возможности ее количественного описания;

·        развитие методологии моделирования вообще и в особенности идеи математического эксперимента с помощью ЭВМ.

Все это, без преувеличения, сыграло революционную роль в развитии общественного сознания, человеческой практики и культуры, подготовило почву для того невиданного ранее размаха компьютеризации, которая происходит на наших глазах в настоящее время.

Однако необходимо воздержаться от преувеличенных оценок результатов применения винеровской кибернетики. Простое сравнение идей Винера с более ранними подходами (например, Трентовского) показывает, что кибернетика не смогла дойти до рассмотрения действительно сложных систем, что винеровской кибернетике свойственен определенный техницизм. В рассмотрении информационных процессов качественная сторона информации принесена в жертву количественной; принцип оптимальности реализуется только в полностью формализованных задачах; при моделировании интеллекта учитывается только логическая компонента мышления. Это действительно так, но все же стремление некоторых специалистов по информатике отмежеваться от винеровской кибернетики выглядит как сверхреакция на ее недостатки. Справедливее рассматривать кибернетику Винера как важный этап в развитии системных представлений, давший ценные идеи и результаты, этап на котором встретились существенные трудности и обнаружились некоторые недостатки самой теории.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.