Рефераты. Параметры функционирования митоКАТФ у животных с различной устойчивостью к гипоксии, а также у крыс, адаптированных к кислородному голоданию

Параметры функционирования митоКАТФ у животных с различной устойчивостью к гипоксии, а также у крыс, адаптированных к кислородному голоданию

Содержание


Список сокращение

Введение

Глава 1. Обзор литературы

1.1           Системы транспорта калия в митохондриях

1.1.1 Транспорт калия в митохондрии

1.1.2    Молекулярные структуры, ответственные за транспорт калия в МХ

1.1.3 Физиологическое значение транспорта калия в МХ

1.1.4 АТФ-ингибируемые калий-транспортирующие каналы

1.2 АТФ-зависимый калиевый канал цитоплазматической мембраны

1.2.1 Структурная организация цитоплазматического АТФ-зависимого калиевого канала

1.3 АТФ-чувствительный калиевый канал внутренней мембраны МХ

1.3.1 Структурная организация митоКАТФ канала

Глава 2. Модуляторы

2.1 Модуляторы митоКАТФ канала

2.1.1 Метаболические модуляторы митоКАТФ канала

2.2 Функциональная роль митоКАТФ

2.2.1 Активация митоКАТФ в развитии устойчивости организма к гипоксии

2.2.2 Механизмы защиты сердца при гипоксии, опосредованные активацией митоКАТФ

2.2.3 Феномен прерывистой гипобарической тренировки

2.3 Выделение МХ

2.3.1 Выделение МХ печени крысы

2.3.2 Выделение МХ сердца крысы

2.3.2 Выделение и очистка митоКАТФ канала

Глава 3. Изучение энергозависимого входа К+ в МХ методом спектрофотометрии

3.1 Изучение ДНФ-индуцированного выхода ионов калия из МХ

3.2 Получение и очистка антител к белку с молекулярной массой 55 кДа.

3.2.1 Подготовка белка с м.м. 55 кДа: выделение и очистка

3.3 Иммунизация и анализ препарата антител

3.3.1 Детекция специфических антител и определение титра

3.3.2 Вестерн-Блот анализ

3.4 Исследование ДНФ-индуцированного выхода К+ из митохондрий с помощью К+-селективного электрода

3.5 Реконструкция белка в БЛМ

3.6 Иммунноэлектронная микроскопия

3.7 MS-MALDI-TOF/TOF- анализ

3.8 Очистка антител к АТФ-зависимому белку с м.м. 55 кДа

3.9 Очистка антител к АТФ-зависимому белку с м.м. 55 кДа на колонке с иммобилизованным Белком А

3.10 Ингибиторный анализ с использованием антител к белку

с м.м. 55 кДа

Глава 4. Выделение комплекса цитоплазматических мембран и микросом печени крыс

4.1 Метод отбора высоко- и низкоустойчивых животных

Глава 5. Результаты и обсуждения

5.1 Параметры функционирования митоКАТФ канала у крыс с различной резистентностью, а также у животных, адаптированных к гипоксии

5.1.1 Изучение параметров дыхания и окислительного фосфорилирования в МХ печени и сердца крыс с различной резистентностью к гипоксии

5.1.2 Изучение параметров АТФ-зависимого транспорта К+ в МХ печени сердца крыс с различной резистентностью к гипоксии

5.1.2 Изучение параметров АТФ-зависимого транспорта К+ в МХ печени сердца крыс с различной резистентностью к гипоксии

5.2 Изучение структурной организации митохондриального АТФ-зависимого калиевого канала

5.2.1 Определение гомологии белка с м.м. 55 кДа методом MS-MALDI-TOF/TOF

5.3 Ингибиторный анализ активности митоКАТФ канала с использованием антител, полученных на белок с м.м. 55 кДа

5.3.1 Определение степени чистоты белка, используемого для иммунизации

5.4 Иммунизация и определение титра полученных антител

5.4.1 Определение специфичности полученных антител

5.4.2 Выделение иммуноглобулинов G (IgG) из антисыворотки и проведение ингибиторного анализа

5.5 Электронная микроскопия МитоКАТФ канала

ЗАКЛЮЧЕНИЕ

ВЫВОДЫ

ЛИТЕРАТУРА


СПИСОК СОКРАЩЕНИЙ


МитоКАТФ – митохондриальный АТФ-чувствительный калиевый канал

ЦитоКАТФ – цитоплазматический АТФ-чувствительный калиевый канал

5-ГД – 5-гидроксидекановая кислота

Глиб – глибенкламид

АТФ – аденозин-5’-трифосфат

УТФ – уридин-5’-трифосфат

УДФ – уридин-5’-дифосфат

УМФ – уридин-5’-монофосфат

ГТФ – гуанин-5’-трифосфат

МХ – митохондрии

АТ – антитела

ФН – неорганический фосфат

АФК – активные формы кислорода

KIR – inward rectifying K+ channels (канальная субъединица митоКАТФ канала)

SUR – sulphonyl urea receptor (регуляторная субъединица митоКАТФ канала,

чувствительная к сульфонилмочевинам)

PCO’s – potassium channel openers (активаторы калиевых каналов)

NFBs – nucleotide phosphate binding domains (нуклеотидсвязывающие участки)

БЛМ – бислойные липидные мембраны

ФИА - феномен ишемической адаптации

ГТ – гипоксическая тренировка

НУ – крысы, низкоустойчивые к гипоксии

ВУ – крысы, высокоусточивые к гипоксии


Введение


Митохондриальный АТФ-ингибируемый калиевый канал (митоКАТФ), осуществляющий вход калия в МХ, был обнаружен методом пэтч-кламп во внутренней мембране МХ в 1991 г. [Inoue et al., 1991]. Однако, еще в 1981 г. в лаборатории проф. Мироновой был выделен белок с м.м. 55 кДа, обладающий свойствами данного канала. [Миронова и др., 1981]. Позднее было показано, что выделенный белок-канал ингибируется физиологическими концентрациями АТФ [Paucek et al., 1992; Миронова и др., 1996 (I)].

В настоящее время достаточно хорошо исследованы биофизические свойства митохондриального калиевого канала и его физиологическая роль [Миронова и др., 1996 (I, II); Paucek et al., 1992; Inoue et al., 1991; Garlid et al., 1997; Mironova et al., 1999; 2004]. Интерес к исследованию этого канала в последнее время возрос, поскольку было показано, что он, а именно его активация, играет ключевую роль в защите миокарда при ишемии [Grover et al., 1992; Garlid et al., 1997; Vanden Hoek, 2000]. Найден целый ряд синтетических активаторов митоКАТФ, являющихся потенциальными кардиопротекторами [Gross et al., 1992; Liu et al., 1998; Sato et al., 1998; Tsai et al., 2002]. Недавно в лаборатории проф. Мироновой был обнаружен эффективный природный метаболический активатор митоКАТФ – уридин-5’-дифосфат (УДФ) [Mironova et al., 2004; Негода А.Е., 2004]. Метаболические активаторы канала имеют ряд преимуществ, по сравнению с их синтетическими аналогами, поскольку их концентрацию в клетке можно регулировать и они не обладают отрицательными побочными эффектами. Действие УДФ, как активатора К+-канала, и, следовательно, кардиопротектора, до настоящего времени не было изучено на животных.

Помимо важной роли митоКАТФ в защите миокарда от ишемических повреждений, некоторые исследователи предполагают участие активации канала в формировании устойчивости организма к кислородному голоданию [Zhu et al., 2003]. Однако прямые доказательства участия канала в адаптации к гипоксии до настоящего времени не получены, то есть, данный феномен также требует дополнительных исследований.

К настоящему времени нами разработана рабочая модель структуры и регуляции канала, в соответствии с которой митоКАТФ канал состоит из двух субъединиц – канальной (с молекулярной массой 55 кДа) и регуляторной (с молекулярной массой 63 кДа). Однако вопрос о структуре канала и возможной гомологии с другими белками пока остается открытым. Изучение структуры митоКАТФ позволит исследовать функцию и регуляцию канала на молекулярном уровне.

В связи с этим, целью данной работы было: изучить структурную организацию митоКАТФ канала, кардиопротекторное действие УДФ при ишемии миокарда, исследовать параметры функционирования митоКАТФ у животных с различной устойчивостью к гипоксии, а также у крыс, адаптированных к кислородному голоданию.

Таким образом, в работе были поставлены следующие задачи:

1)                             Исследовать параметры функционирования митоКАТФ у крыс с различной устойчивостью к гипоксии, а также у животных, адаптированных к недостатку кислорода.

2)                             Определить гомологию структуры исследуемого белка с м.м. 55 кДа аминокислотным последовательностям известных белков.

3)                             Получить специфические поликлональные антитела на белок-канал с м.м. 55 кДа, формирующий при встраивании в искусственные мембраны АТФ-ингибируемые К+ каналы.

4)                             Провести ингибиторный анализ АТФ-чувствительного транспорта калия в нативных МХ с использованием полученных антител (АТ) с целью доказательства принадлежности белка с м.м. 55 кДа к системе АТФ-зависимого транспорта К+ в МХ.

5)                             Исследовать иммунолокализацию МитоКАТФ канала на срезе гепатоцитов и кардиомиоцитах при помощи электронной микроскопии

Глава 1. Обзор литературы

 

1.2           Системы транспорта калия в митохондриях

 

1.1.1 Транспорт калия в митохондрии

Транспорт К+ в митохондриях (МХ) имеет большое функциональное значение, так как концентрация К+ в цитоплазме значительно превышает концентрацию других катионов, и появление любой неконтролируемой проницаемости митохондриальной мембраны для К+ может представлять угрозу осмотической целостности и функциональной интегральности МХ [Brierley et al., 1983]. МХ занимают 40% внутриклеточного пространства в сердечной клетке и до 20% - в клетке печени и по данным [Rottenberg, 1973], в свободном состоянии в матриксе МХ содержится 95 нмоль К+/мг белка МХ, в слабосвязанном состоянии – 45 нмоль и в прочносвязанном – 5 нмоль. Концентрация свободного калия в цитоплазме составляет 90-120 нмоль.

Хемиосмотическая теория Митчела включает четыре постулата, последние два из которых имеют отношение к системе транспорта катионов. Согласно этим двум постулатам, внутренняя мембрана МХ: а) непроницаема для Н+, ОН- и всех прочих ионов; б) содержит ряд белков-переносчиков, осуществляющих транспорт неорганических ионов и необходимых метаболитов. Таким образом, по Митчелу, внутренняя мембрана МХ непроницаема для катионов и анионов. Однако из-за большого электрохимического потенциала [Δφ] (~ –200 мВ с матриксной стороны) одновалентные катионы (К+ и Na+) могут диффундировать через липидный бислой. Проблема такой утечки будет наиболее актуальна для ионов К+, как основного катиона цитозоля и матрикса, хотя скорость такой диффузии будет не велика.

Что касается специфических систем транспорта, то было установлено, что в МХ существуют системы: 1) электрогенного входа калия и 2) К+/Н+-антипортер [Chavez et al., 1977; Diwan, 1981; Garlid, 1980], о существовании которого говорил Митчел [Mitchell and Moyle, 1969].

В работах с использованием радиоактивного калия (42К+) было показано, что активный транспорт К+ в МХ осуществляется электрогенно и что существует специфическая К+-транспортирующая система, функционирующая подобно ионофорам, катализирующим унипорт калия [Gamble, 1957, 1962; Judan et al., 1965; Rottenberg, 1973; Chavez et al., 1977].

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.