Рефераты. Сравнительный анализ методики ознакомления с равенствами, неравенствами, уравнениями в традиционной школе и системе развивающего обучения

Обсуждение итогов работы каждой группы может происходить следующим образом: каждая группа называет величину, с которой она работала. Остальные дети по схеме и формуле определяют, какие предметы могла сравнивать группа и какие ошибки при сравнении, при составлении схемы или записи формулы она могла допустить.

После такой проверки можно предложить группам, парам или отдельным детям (по выбору) придумать свои задания на сравнение или восстановление величин (с которой она работала) по схеме и формуле. Придумав задание, каждый должен выполнить свое задание так, как он хотел бы, чтобы его выполнили другие, а затем организовать “аукцион” заданий, при котором каждый выбирает понравившееся ему (из придуманных детьми) задание.

Предложенные задания можно классифицировать и по другому основанию: большинство из перечисленных заданий позволяет детям познакомиться с основными свойствами равенства и неравенств, однако названий рассматриваемых свойств детям сообщать не нужно. Главное, что дети должны понять, что иногда непосредственного сравнения величин производить не нужно, чтобы узнать, в каком отношении они находятся, т.е. вывод можно сделать, опираясь на результаты сравнения этих величин с другими.

Так, если А=В, то В=А (свойство симметричности), т.е. А сравнили с В, то нет необходимости вновь брать в руки предметы, чтобы сравнивать В и А. Если же А=В, а В=С, то нет необходимости А и С сравнивать непосредственно, так как А наверняка будет равно С, -- это свойство транзитивности равенства. Аналогично можно рассмотреть транзитивность неравенства: если А>В, а В>С, то А>С, и если А<В, а В<С, то А<С.

Тот факт, что буквой может быть обозначена любая величина, дает возможность приступить к использованию дошкольного опыта ребенка, а именно: после составления одной из формулы А>В или А<В предлагать детям подбирать вместо букв подходящие числа. Здесь слово “подходящие” относится как к самому отношению (больше или меньше), так и к дошкольному опыту ребенка, что дает возможность каждому ребенку продемонстрировать свою дошкольную подготовку и при этом быть успешным при любом объеме дошкольных умений.

Переход от букв к подходящим числам дает возможность и для обратных действий, при которых дети восстанавливают буквенные формулы с помощью числовых. Этот обратный переход можно задать следующим образом: “Дети в другом классе вместо букв в формуле подобрали подходящие числа. Вот что они записали: 7<8. Как вы думаете, какая была формула?” Дайте возможность обсудить это в группах.

В дополнение к указанным заданиям необходимо предложить выполнить задание с “ловушкой”:

- поставить двое весов: на одни весы положить одинаковые по массе предметы и на другие тоже. Записать либо М1=М2 и М3=М4, либо А=В и С=Д.

Возникает вопрос: можно ли, не взвешивая самих предметов, сравнить массы А и Д (а следовательно, и В и Д, А и С, В и С)? Если ребенок понимает свойство транзитивности, то он должен утверждать, что такого сравнения без взвешивания сделать нельзя, массы А и Д могут оказаться как одинаковыми, так и разными.

Если ребенок обращает внимание только на знаки равенства, а связи между сравниваемыми величинами не видит, то его вывод будет неверным, т.е. он будет утверждать: А=Д. Тогда и возникает вопрос: как не ошибиться? Для этого следует сделать две записи и сравнить их.

I II

А=В, а В=Д А=В, а С=Д

Сравнить

А и Д А и Д

Первая позволяет без непосредственного сравнивания сделать вывод А=Д, а вторая нет: может оказаться А>Д, А<Д, А=Д, все будет зависеть именно от отношения между А и С.

Схема даст возможность обосновать свою точку зрения, а затем вновь вернуться к равенствам, по которым можно определить, во-первых, сколько величин участвует в сравнении и, во вторых, как связаны эти величины между собой. Могут появиться следующие записи и схемы (см. приложение ).

Важно помнить, что обсуждение данного материала следует начинать не до того, как дети собираются чертить схемы, а после того, как схемы к формулам готовы.

Традиционно же все делается наоборот: сначала дети говорят, обсуждают, как выполнять задание, а потом его делают, а в этой системе обучения нужно сначала сделать (осуществить практическое действие), а затем обсуждать, как это сделали и как научить других делать то, что умеешь делать сам. Повторю, это коренное и принципиальное отличие подхода к обучению в системе РО.

Итогом работы над данной темой является составление справочника ошибок, в который как раз включаются все возможные ошибки, которые были или могут быть (!) у детей. Фиксируя их в справочнике любым удобным для детей способом, необходимо каждый раз возвращаться к вопросам о происхождении этих ошибок, а также к способам их обнаружения и исправления, что является необходимым этапом дальнейшего предупреждения этих ошибок.

2.4. Переход от неравенства к равенству и наоборот

Основная задача в том, чтобы дети смогли найти три способа уравнивания:

1) путем увеличения одной (меньшей) величины до ее равенства с другой (большей), т.е. с помощью сложения:

А А

В После уравнивания В С

А>В А = В + С

2) путем уменьшения одной (большей) до ее равенства с другой меньшей, т.е. с помощью вычитания:

А А

В После уравнивания В В С

А>В А - С = В

3) путем уменьшения одной и увеличения другой на одну и ту же величину:

А А

В После уравнивания С С К

А>В В К

А - К = В + К

Третий способ предполагает свободное владение первыми двумя.

Итак, два первых способа уравнивания величин являются основными.

Постановку задачи, требующей уравнивания величин, начнем со сказочного сюжета о Незнайке.

Прочитайте ту часть сказки, в которой рассказывается о том, как Винтик и Шпунтик изобрели автомобиль, который работал на газированной воде с сиропом (текст приведен в учебнике).

Результатом обсуждения возможных причин остановки машины станет постановка задачи, требующей уравнивания величин.

Нужно в бак налить столько сиропа, сколько его не хватает, чтобы бак стал полным.

Налейте воды (подкрашенной!) в две банки так, чтобы одна из них была полная (но не до самого края, чтобы можно было при необходимости долить немного воды), а вторая заполнена примерно на 1/3. Объясните, сколько сиропа должно быть и сколько осталось. Условие работы “двигателя” - полная банка.

Теперь вместе с детьми переведем эту задачу на язык математики:

Есть две неравные величины (объем воды в банках). Изобразим их, обозначив буквами (например А и В), и запишем формулу:

А

В

или А

А>В В

В сюжетной задаче о баке нам нужно узнать, сколько сиропа нужно добавить в неполную банку, чтобы машина снова могла ехать. Эта же проблема на языке математики выглядит так: нужно уровнять величины так, чтобы меньшая величина В стала равна большей величине А.

Как это можно сделать?

Сначала дети выполняют практическое действие, пытаясь в неполную банку долить воды до того же уровня, что и в первой банке, т.е. долить воды столько, сколько ее не хватало до полной банки. Проще говоря, проблема сначала выглядит так: что нужно сделать, чтобы в неполной банке воды стало столько же, сколько в полной банке? Ответ не заставит себя ждать, и дети тут же скажут, что воду нужно долить. Вы непременно выполняете практическое действие, доливая воды значительно меньше, чем нужно (или, наоборот, больше).

Если дети скажут, что этого мало, то долейте заметно больше, чем нужно (или отлейте больше, чем нужно). Именно тогда дети и смогут осмыслить то, что речь идет об определенном количестве - ни больше, ни меньше.

Возникает новая задача: какое количество воды нужно долить, чтобы стало поровну?

Невозможность восстановить прежний объем есть основание для рождения у детей о метках на обеих банках.

Поскольку дети уже умеют изображать величины, то предложите им сначала изобразить данные величины (объемы воды или количество воды) с помощью схемы, обозначив их буквами.

Затем, запишем формулы: А>B или B<A.

Теперь ответ на вопрос (сколько же нужно долить воды?) может быть показан на банках и на схеме: 1) на банках: от метки на одной банке до метки на другой или с помощью двух меток на одной банке, если вторая метка прикреплена детьми при сравнении:

Метка, которую добавили

Метка дети, на том же уровне, что

и на первой банке

На схеме эту же разность (разницу) дети могут показать так:

это тот объем воды, который нужно долить

А в банку с меньшим объемом (В).

Помните! Не банка В, а объем воды

В в банке - это В, банки то одинаковые.

Показать то, сколько нужно долить воды, - это то же самое, что узнать, на сколько одна величина больше другой или меньше другой, - А>В (на С). Чтобы узнать эту новую величину С, нужно от большей величины отнять меньшую, т.е. С = А - В.

Значит, если к величине В добавить разницу, а “настоящие математики” говорят “разность”, - величину С, равную А - В, то получится величина, равная А.

А = В + С (1) или А = В + (А - В) (2)

С

Найти эту разницу, т.е. разность между величинами и записать формулу (2) дети смогут лишь после введения знака “минус”.

Чтобы изменить отношение между величинами, т.е. из неравенства сделать равенство или, наоборот, из равенства сделать неравенство (но таких заданий мало, т.к. они являются обратными, восстанавливающими неравные величины из равных, поэтому их желательно дополнить), нужно будет одну из двух величин либо увеличить (+), либо уменьшить (-), а может быть уменьшить одну и увеличить другую, причем на сколько уменьшают одну, на столько же увеличивают другую.

Очень важно, чтобы дети понимали: когда они от неравенства переходят к равенству, то отнимать или добавлять нужно не сколько угодно, а определенное количество, соответствующее разности этих величин.

Работа с графическими и знаковыми моделями, т.е. схемой и формулой, является основным звеном в цепи решения учебной задачи.

Отношение неравенства однородных величин (А<В) и операция сложения (А+В=С) обладают следующими свойствами:

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.