Рефераты. Методика преподавания темы "Тригонометрические функции" в курсе алгебры и начал анализа

7) (Для самостоятельно решения с последующей проверкой)

а) sin(х+4/3)-1= (х-)2 б) -sin(х-/6)+1,5 - ((х-4/6)2 +0,5)=0

Краткий анализ урока.

На данном уроке учащиеся научились исследовать кусочно-заданные функции, содержащие функцию у= sin х как одну из своих составляющих, научились применять известные ранее правила преобразования графиков функций к функции у=sinх, а также графически решать некоторые тригонометрические уравнения. Об этом можно судить исходя из результатов проделанной учащимися домашней работы, а также по последующему применению полученных умений при решении подобных задач для функции у= соs х. Поэтому можно сделать вывод о том, что цели данного урока были реализованы. Что касается затруднений, то наибольшие затруднения вызвали задания, связанные с преобразованием графиков. Часто учащиеся путались в вопросе - когда в какую сторону переносить график. Но в целом урок прошел неплохо.

Заключение.

Итак, приняв во внимание описанные в первом параграфе общие положения, касающиеся изучения тригонометрических функций, мы проанализировали наиболее распространенные учебники с точки зрения изложения данной темы (см. § 2) и обобщили полученные результаты в §3. Используя опыт практического преподавания, описанный в §4 можно сделать следующие выводы:

1. Тригонометрические функции являются наиболее удобным и наглядный средством для обучения учащихся исследованию функций.

2. Преподавание темы «Тригонометрические функции» требует тщательного подбора содержания, средств и методов обучения, то есть разработки эффективной методики.

3. Изучение тригонометрических функций будет более эффективным, в том случае когда:

ь перед введением тригонометрических функций проведена достаточно широкая пропедевтическая работа с числовой окружностью;

ь числовая окружность рассматривается не только как самостоятельный объект, но и как элемент декартовой системы координат;

ь построение графиков осуществляется после исследования свойств тригонометрических функций, исходя из анализа поведения функции на числовой окружности;

ь каждое свойство функций четко обоснованно и все они сведены в систему.

4. Наиболее удачным как с методической, так и с содержательной точек зрения является учебник [16].

Библиографический список:

1. Алексеев, А. Тригонометрические подстановки [Текст] / Алексеев А., Курляндчик Л. // Квант. - 1995. - №2. -с. 40 - 42.

2. Алимов, Ш.А. Алгебра и начала анализа 10-11[Текст] / Ш.А. Алимов // Учебник - Москва: Просвещение, 2001.

3. Башмаков, Алгебра и начала анализа 10-11 [Текст] /Башмаков //Учебник - Москва: Просвещение, 1992.

4. Бескин, Н.М. Вопросы тригонометрии и ее преподавания [Текст] / Бескин Н.М. - Москва: Учпедгиз, 1950.

5. Гилемханов, Р.Г. О преподавании тригонометрии в 10 классе по курсу В [Текст] / Гилемханов Р.Г. //Математика в школе. 2001-№ 6 -с. 26-28.

6. Горнштейн, П.И. Тригонометрия помогает алгебре [Текст] / Горнштейн П.И. // Квант. 1989-№5 - с. 68-70.

7. Дорофеев, Г. Периодичность и не периодичность функций [Текст] / Дорофеев Г., Розов Н. //Квант. 1977- №1- с.43-48.

8. Зарецкий, В.И. Изучение тригонометрических функций в средней школе [Текст] / Зарецкий В.И. - Минск: Народная асвета, 1970.

9. Земляков, А. Периодические функции [Текст] / Земляков А., Ивлев Б. // Квант. 1976-№12- с. 34-39.

10. Калинин, С.И. Задачи и упражнения по началам математического анализа [Текст] / Калинин С.И., Канин Е.С., Маянская Г.М., Ончукова Л.В., Подгорная И.И., Фалелеева С.А. - Киров: ВГПУ, 1997.

11. Колмогоров, А.Н. Алгебра и начала анализа 10-11 [Текст] /А.Н. Колмогоров// Учебник - Москва: Просвещение, 1999.

12. Крамор, В.С. Тригонометрические функции [Текст] / Крамор В.С., Михайлов П.А. - Москва: Просвещение, 1979.

13. Лященко, Е.И. Лабораторные и практические работы по методике преподавания математики [Текст] /Лященко Е.И. - Москва: Просвещение, 1988.

14. Мишин, В.И. Методика преподавания математики в средней школе (Частная методика). [Текст] / Мишин, В.И. - Москва: Просвещение, 1987.

15. Мордкович, А.Г. Методические проблемы изучения тригонометрии в общеобразовательной школе [Текст] / Мордкович А.Г. //Математика в школе. 2002 - № 6 - с.32-38.

16. Мордкович, А.Г. Алгебра и начала анализа 10-11 [Текст] /А.Г. Мордкович// Учебник- Москва: Мнемозина, 2003.

17. Панчишкин, А.А. Тригонометрические функции в задачах [Текст] / Панчишкин А.А., Шавгулидзе Е.Т. - Москва: Наука, 1986.

18. Раббот, Ж. Тригонометрические функции [Текст] / Раббот Ж. // Квант. 1972- №5- с. 36-38.

19. Синакевич, С.В. Тригонометрические функции [Текст] / Синакевич С.В. - Москва: Учпедгиз, 1959.

20. Смирнова, И.М. Необычный способ получения синусоиды [Текст] / Смирнова И.М. // Математика в школе. 1993-№3- с.56-58.

21. Цукарь, А.Я. Упражнения практического характера по тригонометрии [Текст] / Цукарь А.Я. //Математика в школе. 1993-№3- с 12-15.

22. Шаталов, В.Ф. Методические рекомендации для работы с опорными сигналами по тригонометрии [Текст] / Шаталов В.Ф. - Москва: Новая школа, 1993.

23. Шенфельд, Х. Что общего между заходом солнца и функцией y=sin х [Текст] /Шенфельд Х. // Математика в школе. 1993-№2- с.75-77.

Приложение

Факультатив «Тригонометрия помогает алгебре».

Известно, что «тот или иной материал усваивается школьниками не тогда, когда этот материал является целью обучения, а тогда, когда он становится средством для решения других задач»[10]. Поэтому целесообразно показать учащимся то, как можно применять свойства тригонометрических функций и тригонометрические тождества при решении, например, алгебраических задач.

Цели:

1) Провести межпредметные связи между тригонометрией и алгеброй.

2) Способствовать формированию умений решать некоторые виды уравнений алгебры с помощью тригонометрических подстановок.

Место изучения.

Этот факультатив желательно проводить после того, как изучены все разделы тригонометрии.

Ход факультатива:

Учащимся предлагается попробовать решить уравнение самостоятельно. Попробовав выполнить стандартное возведение в квадрат обеих частей, учащиеся натыкаются на уравнение 6-ой степени, решение которых в школьном курсе не рассматривается. Обратив внимание учащихся, на то, что областью допустимых значений переменной данного уравнения является отрезок [-1;1], учитель предлагает вспомнить изученные функции, областью значений которых является данный отрезок. После чего делается вывод: если из условия задачи следует, что допустимые значения переменной x определяются неравенством |x|?1, то удобны замены х=sinб, б, или х=cosб, б, причем какую из них выбрать, зависит от конкретной задачи.

Учащиеся совместно с учителем прорешивают данное уравнение.

«Поскольку функция 4х3-3х существует при любых значениях х, найдем область определения функции f(x)= : 1- х2 ?0, значит х. Введем замену х=cosб. Нас интересуют все значения этой функции. Выберем для удобства любой отрезок, на котором функция косинус принимает все свои значения, например отрезок .

Подставим х=cosб в уравнение, получим

Так как б, то sinб ?0 и можно опустить модуль:

Условию б удовлетворяют три значения б1=, б2=, б3=.

x1=cos б1=cos=,

x2=cos б2=cos=-sin= =

x3= cos б3=cos =-cos=.

Ответ: x1=, x2=, x3=.

Пример 2. Сколько корней на отрезке [0;1] имеет уравнение

При отсутствии лишнего времени решение лучше вынести в качестве домашнего задания. Если уровень подготовки класса не очень высок, то учитель может сделать подсказку «Замена х=cosб, б ставит в соответствие каждому значению х на [0;1] ровно одно значение б. Значит, число решений исходного уравнения на [0;1] равно числу решений соответствующего уравнения на , причем так как х0 и х1, то можно взять б». Уравнение примет вид

Условию б удовлетворяют четыре значения б1=, б2=, б3=, б4=.

Ответ: уравнение на отрезке [0;1] имеет ровно четыре корня.

Пример 3. Решить систему уравнений

Внимательно посмотрев на первое уравнение системы, учащиеся сами (или с помощью учителя) замечают, что оно очень похоже на основное тригонометрическое тождество и делают вывод: если в задаче встречается равенство х2+y2=1, то часто бывает полезно сделать замену х= sinб, y= cosб, б, так как числа, сумма квадратов которых равна 1, это синус и косинус одного и того же числа. Дальнейшее решение системы не вызывает затруднений и может быть произведено учащимися самостоятельно.

Пусть х= sinб, y= cosб, б Второе уравнение системы примет вид

Условию б удовлетворяют четыре значения б1=, б2=, б3=, б4=.

х1= y1=

х2= y2=

х3= y3=

х4= y4=

Ответ: х= , y= ; x= , y= ; x= ,

y= ; x= , y= .

В качестве домашнего задания учащимся можно предложить решить задачу:

Числа a, b, c, d таковы, что a2+b2=1, c2+d2=1, ac+bd=0. Чему равно ab+cd?

Решение может выглядеть следующим образом. «Пусть а= sinб, b= cosб, б, c=sinв, d=cosв, в. Уравнение ac+bd=0 перепишем в виде

Преобразуем выражение ab+cd:

Так как cos(б- в)=0, то sin(б +в)*cos(б - в)=0, a значит ab+cd=0.

Ответ: ab+cd=0»

После этого учитель подводит учащихся к вопросу: «Можно ли применять тригонометрические подстановки для решения уравнений, в область допустимых значений которых входят все действительные числа?»

Можно, но в случаях, когда переменная может принимать различные значения, используются замены x=tgб, б и x=ctgб, б.

Пример 5. Доказать, что при любых действительных х и у

.

Замечание. Желательно обсудить с учащимися лишь необходимую замену. Все остальное они в силах проделать самостоятельно.

Положим , где . Тогда

Так как все значения выражения

лежат в промежутке [-1/2;1/2], следовательно, и все значения исходного выражения лежат в этом же промежутке. Что и требовалось доказать.

Array

Страницы: 1, 2, 3, 4, 5, 6, 7



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.