Рефераты. Методика преподавания темы "Тригонометрические функции" в курсе алгебры и начал анализа

Ну, а учебник [2] по сравнению с другими изобилует большим количеством цитат и шуточных математических рисунков. Это, несомненно, развивает математический кругозор учащихся, но, что касается содержательной стороны этого учебника, то, по моему мнению, он больше подойдет для обучения математике в профильных (не математических) классах.

Перейдем к анализу изложения конкретной темы «Тригонометрические функции» в данных учебниках. Напомним, что в школьном курсе математики в разные годы использовались разные варианты введения тригонометрических функций: при помощи тригонометрического круга, при помощи проекции и некоторые другие.

В современных учебных пособиях предпочтение отдается определению с помощью единичной окружности. При этом только в [16] уделено достаточное внимание работе с числовой окружностью как с самостоятельным объектом изучения, и это является одним из достоинств этого учебника.

Слишком поспешное введение понятий синуса и косинуса «по окружности» приводит к трудностям при дальнейшем обучении: многие учащиеся испытывают затруднения с геометрическим истолкованием «тригонометрического языка». Таким образом, не получается создать надежный фундамент для успешного изучения материала.

В учебнике [16] на работу с числовой окружностью отводится 5 часов, что составляет почти 20% от 28 запланированных часов на изучение всей темы «Тригонометрические функции». Вообще говоря, здесь рассматриваются две математические модели: «числовая окружность» и «числовая окружность на координатной плоскости». То есть учащиеся обучаются работать одновременно в двух системах координат: в прямоугольной декартовой и криволинейной. Это поможет им в дальнейшем, когда понятия синуса и косинуса угла будут вводиться через координаты.

Здесь не только четко выделяется алгоритм построения точки на числовой окружности, но и проводится аналогия с числовой прямой, с указанием основных сходств и различий в построении точки на окружности и на прямой. Неплохо в учебнике [16] мотивируется и само введение числовой окружности: «В реальной жизни двигаться приходится не только по прямой, но и по окружности. Будем считать беговую дорожку стадиона окружностью…». К тому же, уже на этапе изучения числовой окружности в неявном виде происходит подготовка к решению простейших тригонометрических уравнений и неравенств.

Например, рассматриваются задания типа: «Найти на числовой окружности точки с ординатой у = 1/2 и записать, каким числам t они соответствуют», «Найти на числовой окружности точки с абсциссой х < 1/2 и записать, каким числам t они соответствуют».

Итак, в учебнике [16], в отличие от остальных учебников, проводится достаточно хорошая пропедевтическая работа для введения тригонометрических функций.

В учебнике [3] также присутствуют элементы работы с числовой окружностью, но не в таком количестве как в [16]. Здесь выделяется отдельный параграф «Вращательное движение и его свойства», в котором рассматриваются такие вопросы как построение точки по заданной мере угла и свойства вращательного движения.

В учебнике [11] в качестве подготовительной работы для введения тригонометрических функций выступает лишь повторение следующих вопросов:

- радианная мера угла (измерение углов в радианах, таблица значений тригонометрических функций (рассматривается исходя из геометрических соображений)),

- основные формулы тригонометрии (основное тригонометрическое тождество, формулы суммы и разности двух аргументов, формулы приведения, формулы суммы и разности синусов и косинусов, формулы двойного и половинного аргументов).

Вообще вопросы тригонометрии в этом учебнике рассматриваются в следующем порядке: тригонометрические преобразования - тригонометрические функции - тригонометрические уравнения и неравенства, в отличие от учебника [16], по которому сначала изучаются функции, затем уравнения и неравенства, а только потом преобразования (как свойства функций).

Обучение же по учебникам [2] и [3] предполагает изучение тригонометрических функций не в начале 10 класса (как это представлено в учебниках [11] и [16]), а в конце него. Авторы учебника [2] предлагают приступить к изучениию тригонометрии после изучения показательной и логарифмической функций. Причем, сначала изучаются тригонометрические преобразования, затем - тригонометрические уравнения и только после этого - тригонометрические функции. Такое расположение темы имеет ряд особенностей:

- изучение тригонометрических уравнений подразумевает изучение обратных тригонометрических функций. Таким образом, сначала учащиеся детально прорабатывают понятия арксинуса, арккосинуса и арктангенса, а затем только приступают к работе с синусом, косинусом и тангенсом, хотя с точки зрения логики, целесообразнее сделать наоборот;

- изучение тригонометрических функций после тригонометрических уравнений выкидывает из рассмотрения один из немаловажных методов решения тригонометрических уравнений - а именно графический метод (к тому времени мы ещё не умеем строить графики тригонометрических функций).

В учебнике же [3] же вообще предлагается изучать тригонометрию уже после изучения производной. Это позволяет вычислять приближенные значения тригонометрических функций в точках, тем самым облегчая их исследование, помогая при построении графиков и решении тригонометрических уравнений.

Что касается введения самих тригонометрических функций, то и здесь каждый из учебников имеет свои особенности. Начнем с определения синуса и косинуса. В учебнике [2] дается следующее определение: «Сos х - это абсцисса точки единичной окружности, полученной поворотом точки Р (1;0) вокруг начала координат на угол х, а sin х - ее ордината». В [16]: «Если точка М числовой окружности соответствует числу t, то абсциссу точки М называют косинусом числа t, а ординату точки М называют синусом числа t». Эти два определения, в общем-то, принципиально не различаются, за исключением только того, что в учебнике [2] тригонометрические функции определяются как функции углового аргумента, а в [16] как функции числового аргумента, да еще присутствуют различия в обозначении переменной (заметим, что при работе с числовой окружностью лучше употреблять символы sin t, cos t, tg t, ctg t, учитывая, что знак х в сознании детей ассоциируется с абсциссой в декартовой прямоугольной системе координат, а не с длиной пройденного по числовой окружности пути).

В учебнике же [11] как таковых определений синуса и косинуса нет, а вместо них присутствует фраза «… нетрудно понять, что ордината точки Р - это синус угла , а абсцисса этой точки - косинус угла », а затем приведено геометрическое подтверждение этого факта. Благодаря этому, у учащихся не возникает недоумения по поводу того, почему раньше синусом называли отношение длин катета и гипотенузы, а сейчас откуда-то выплыли какие-то абсциссы и ординаты. В учебнике [16] этот факт тоже довольно неплохо пояснен, но с опозданием в 3 параграфа, а в учебнике [3] пояснение отсутствует вовсе.

Тангенс же во всех учебниках, за исключением [11], определяется как отношение синуса к косинусу. В учебнике же [11] опять не дается четкого определения тангенса, а приводится лишь геометрическая интерпретация «ордината точки пересечения прямой ОР (Р - точка на единичной окружности) и касательной к окружности в точке (1;0) равна тангенсу угла ».

Определения котангенса авторы дают аналогично определениям тангенса за исключением учебника [2], в котором котангенс почему-то совсем игнорируется и не рассматривается как функция.

Остановимся подробнее на вопросах исследования и построения графиков тригонометрических функций.

В учебнике [16] процесс построения графика и исследования функции происходит следующим образом: уже известные ребятам факты обобщаются и формулируются как свойства функций. Сначала рассматриваются такие свойства функции y=sin(x), как область определения, множество значений, нечетность, возрастание на отрезке [0;/2] и убывание на отрезке [/2; 3/2], ограниченность сверху и снизу, наибольшее и наименьшее значение. Затем составляется таблица основных значений функции на отрезке [0;], строятся соответствующие точки и плавно соединяются.

Используя свойство нечетности синуса, полученный график отображается относительно начала координат на отрезок [-;0], используя свойство периодичности, график функции достраивается на остальных отрезках длиной 2. С опорой на построенный график, выделяется свойство непрерывности функции синус и область ее значений. Исследование функции cos х и построение ее графика как и во всех остальных учебниках основывается на том факте, что cos х = sin (х+/2).

В учебнике [3] построение синусоиды происходит при помощи единичной окружности переносом значения синуса к соответствующим точкам оси ОХ. А затем, после построения графика, еще раз происходит возвращение к свойствам и к тому, как они проявляются на графике. В учебнике [11] синусоида строится подобно тому, как она строится в [3], но все свойства функций за исключением области определения и множества значений рассматриваются в следующей теме «Основные свойства функций», а затем только переносятся на тригонометрические.

Отметим, что в учебниках [16] и [11] не обоснован тот факт, что областью определения функций sin и cos является множество всех действительных чисел. Конечно, этот факт достаточно очевиден, но тем не менее учебник пишется не для учителя, а для учеников, а «мера очевидности», как известно, у всех разная. Поэтому не стоит забывать об обосновании даже очевидных фактов, ведь это приучает ребят к столь необходимой при изучении математики логической четкости и аккуратности мысли.

Что касается области значений тригонометрический функций, то ни в одном из учебников нет четкого обоснования данного свойства. Все «попытки» обоснования этого свойства сводятся к рассмотрению двойных неравенств: -1 sin х 1 и -1 соs х 1, которые выполняются для всех значений х. Однако, отсюда совершенно не следует то, что в область значений данных функций входят все точки отрезка [-1;1].*

При обосновании свойств четности и нечетности тригонометрических функций доказательство тождества sin(-х) = -sin(х) сводится в основном к симметричности точек х и -х, которая также четко не обоснована ни в одном из учебников. ** более подробно эти вопросы изложены в параграфе 3

Монотонность же тригонометрических функций во всех учебниках, за исключением [11], иллюстрируется с помощью числовой окружности. В учебнике [11] в силу того, что тригонометрические преобразования изучаются перед тригонометрическими функциями, монотонность функции у= sin(х) обоснована более доказательно, но все же некоторые недочеты имеются.*

При изучении свойства периодичности авторы учебников [16], [2] и [11] дают следующее определение периодичности: «Функция f(x) называется периодической, если существует такое число Т0, что для любого х из области определения данной функции выполняется равенство f(x-T)=f(x)=f(x+T). Число Т называется периодом функции f(x)». В учебнике [3] равенство f(x-T)=f(x)=f(x+T) заменяется менее сильным равенством f(x)=f(x+T), но зато снимаются ограничения на х. Здесь х может быть любым, а не только из области определения. Заметим, что для функций, областью определения которых является все множество R, эти два определения будут не только равносильными, но и одинаково корректными (см. [23] (стр. 108 №145)). Но если применять второе определение к функции у=sinх, то у учащихся может вызвать затруднения сравнение значений данной функции в точках, например, - и . Поэтому более целесообразным является использование первого определения.

Страницы: 1, 2, 3, 4, 5, 6, 7



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.