Рефераты. Методика преподавания темы "Тригонометрические функции" в курсе алгебры и начал анализа

Далее следует еще раз обратить внимание учащихся на следующий факт. В определениях четных и нечетных функций в явном виде не указано то, что такие функции имеют область определения, симметричную относительно начала координат, но этот факт часто оказывается полезным при решении задач типа «Докажите, что функция у= sin x, не является ни четной, ни нечетной». Используя вышеупомянутый факт и определив, что область определения данной функции не является симметричной относительно начала координат, сразу можно сделать вывод о том, что функция у=sinx, действительно, не является ни четной, ни нечетной, не рассматривая соответствующих уравнений.

Так же полезно определять четность функций, заданных кусочно. Например, определить являются ли следующие функции четными или нечетными:

Sin (x), если х 0 Соs(x/2), если х

f(x)= f(x)= 2 + х2, если - х

Соs(x), если х0 Соs(x/2), если х

4) Монотонность.

При рассмотрении свойства монотонности тригонометрических функций в большинстве действующих учебников (кроме [11]) не приводится четкого доказательства возрастания функций y=sin x и y=соs x на промежутках [-/2;/2] и [-;0] соответственно, а обоснование этих фактов проводится с опорой на числовую окружность: «При движении точки по четвертой и по первой четвертям окружности в положительном направлении ( от -/2 до /2 ) ее ордината постепенно увеличивается (от -1 до 1), значит функция y=sin x является возрастающей на этом промежутке» (см. [16]). Более строгое доказательство этого факта приводится с опорой на формулу разности синусов и применимо в случае, когда тригонометрические преобразования изучаются раньше тригонометрических функций, то есть когда формула разности синусов к моменту исследования тригонометрических функций является уже известной (см. [11]). «Пусть

-/2 х1 х2 /2,

применяя формулу разности синусов находим

sin х2 - sin х1 = 2 соs [(х1 2)/2]*sin [(х2 - х1)/2].

Из неравенства -/2 х1 х2 /2 следует, что

-/2 1 + х2)/2 /2 и 0 2 - х1)/2 /2,

поэтому соs12)/2 0 и sin21)/2 0, а следовательно, sin х2 - sin х1 0 то есть sin х2 sin х1»(см. [11]). При этом учителю следует обратить внимание на пояснение того, как из неравенства -/2 х1 х2 /2 получаются неравенства -/2 12)/2 /2 и 0 2-х1 )/2 /2.

Это целесообразно проиллюстрировать, изобразив отрезок [-/2;/2]. Заметим, что (х1+х2)/2 не что иное, как среднее арифметическое чисел х1 и х2, а, следовательно, принадлежит отрезку [х1;х2], который, в свою очередь, целиком лежит в отрезке [-/2;/2], то есть первое неравенство имеет место. Гораздо большую трудность вызывает обоснование второго неравенства. Заметим, что модуль разности х2-х1 - это расстояние между точками х1 и х2, а так как обе точки принадлежат одному отрезку [-/2;/2], то расстояние между ними не может превышать длины этого отрезка, то есть . С другой стороны модуль - функция неотрицательная, более того, в данном случае положительная, так как х1 и х2 различны. Имеем 0 х2-х1 , но так как х1 х2, то х2-х1 = (х2-х1). Разделив все части неравенства на 2, получим доказываемое неравенство.

Доказательство возрастания функции y=tg x на интервале (-/2;/2), целесообразнее всего проводить аналогичным образом, используя формулу разности тангенсов (см [11]). В случае же, когда преподавание ведется по учебникам, в которых тригонометрические преобразования изучаются после функций, то есть формула разности тангенсов к моменту исследования функций еще не известна, доказательство лучше проводить, разбив интервал (-/2;/2) на два полуинтервала [0;/2) и (-/2;0]. Обоснование возрастания функции y=tg x на полуинтервале [0;/2) не сложно и приведено во всех учебниках, а доказательство монотонности на втором интервале авторы учебников [16] и [2] почему-то считают сложным и опускают вовсе. Поэтому учителю следует обратиться к учебнику [3], в котором дано довольно строгое, но вместе с тем несложное доказательство:

Пусть -/2 х1 х2 0, тогда 0 2 1 /2. Теперь числа -х1 и -х2 лежат в первой четверти, в которой тангенс возрастает, следовательно tg(-х2 ) tg(-х1). Так как y=tg x нечетная функция, то

tg(-х2 ) tg(-х1) -tg2 ) - tg1),

а следовательно tg1) tg2). Что и означает, что функция y=tg x возрастает на промежутке (-/2;0], а значит и на интервале (-/2;/2). Доказательство монотонности функции y=сtg x целесообразно предложить в качестве задания для самостоятельного выполнения.

5) Нули функции и промежутки знакопостоянства.

Нахождение нулей функций и промежутков знакопостоянства сводится к решению простейших тригонометрических уравнений и неравенств, которые учащиеся рассматривали при изучении числовой окружности и не вызывает затруднений.

6) Периодичность.

Изучению этого свойства необходимо уделить особое внимание, так как учащиеся впервые сталкиваются с периодическими функциями. Для отработки понятия периодичности функции целесообразно использовать следующие упражнения.

1. На рисунке изображена часть графика периодической функции на отрезке [-2;2], длина которого равна периоду функции. Постройте график функции на отрезках [-6;-2], [2;3].

2. Постройте график периодической функции y=f(x), с периодом равным 2, если известно, что f(x)=х2/2 на отрезке [-1;1].

3. Является ли число 16 периодом функции y=sin x? А ее основным периодом?

4. Найти основные периоды функций y=sin(6x), y=соs(x/2), y=sin(кx).

5. Докажите, что если функция y=f(x) является периодической, то и y=k*f(x)+b тоже периодическая.

6. Пусть функция f периодическая, Т1 и Т2 - ее периоды. Докажите, что любое число вида nТ1 +mТ2, где n,mN, также является периодом функции f.

7. Докажите, что функции f(x) = sin x2 и cos (x)*cos x не являются периодическими.

8. Докажите, что возрастающая функция не может быть периодической. И т.п.

Следует обратить внимание учащихся на тот факт, что периодическая функция имеет бесконечное множество периодов, среди которых стараются выделить, если это возможно, наименьший положительный период, который называют основным.

После этого все свойства тригонометрических функций желательно проиллюстрировать на графике и свести в одну таблицу.

Свойства

у=sin(x)

у=cos(x)

у=tg(x)

y=ctg(x)

Область определения

Область значений

Нули функции

Для дальнейшей отработки навыков по исследованию тригонометрических функций и построению их графиков используют гармонические колебания, которые имеют вид y =Asin(wt+a) и y =Acos(wt+a). Основной целью введения гармонических колебаний является наглядная демонстрация того, как изменяются свойства функций в зависимости от значения коэффициентов A,w и a. При этом целесообразно использовать задания вида:

1.По графику функций определите задающую ее формулу:

Рис.6

2. Какими свойствами обладают данные функции на отрезке [-/2; /2], а на отрезке [0; ]?

Возрастает

Имеет ровно один корень

Пробегает всё множество значений

Убывает

Не меняет знак

Y=cos(x)

Y=cos(x/2)

Y=3cos(2x)

Y=cos(x+/4)

Y=2cos(/2-x)

Какими свойствами обладают данные функции на данных промежутках?

[-/2; /2]

[0; ]

[-2;0]

[-3 /2;- ]

[-; ]

Y=cos(x)

Y=cos(2x)

Y=2cos(x/2)

Y=cos(x+/2)

Y=3cos(/4-x)

Страницы: 1, 2, 3, 4, 5, 6, 7



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.