Рефераты. Методика преподавания темы "Элементы логики" в курсе математики 5-6 классов

Анализ учебной литературы.

В процессе обучения школьников математике большую роль играет учитель, но немаловажное значение имеет и учебник или то учебное пособие, с которым ученик имеет возможность самостоятельно поработать, либо повторить пройденное.

В настоящее время не все учебники содержат материал, который познакомил бы учеников с элементами логики в полной мере. В ныне существующих учебниках рассматриваются вопросы, связанные с высказываниями и их равносильными преобразованиями. В основном, это одно или двуместные высказывания. Здесь изучаются уравнения, тождества, тождественно равные выражения, неравенства, системы уравнений и неравенств, а также их свойства. Этот материал дается с целью использования его при решении текстовых задач. Проанализируем некоторые из учебников.

1) Дорофеев, Г. В. Математика. 5 класс. В двух частях. Л. Г. Петерсон// М.: «Баласс», «С-инфо», 1998.

Учебник [5] состоит из двух частей, каждая из которых поделена на главы.

В первых двух параграфах первой главы автор предлагает изучить математические выражения и математические модели. Здесь ребята смогут научиться записывать, читать, составлять выражения и находить их значения, что несомненно поможет в изучении последующих тем, а именно в переводе условия задачи на математический язык, в работе с математическими моделями.

Но больше интересует пункт - «Язык и логика».

Здесь автор предлагает изучить следующие темы:

1. Высказывания.

2. Общие утверждения.

3. «Хотя бы один».

4. О доказательстве общих утверждений.

5. Введение обозначений.

В этом параграфе рассматривается понятие высказывания или утверждения и связанные с ним простейшие понятия. При этом автор отмечает, что вместо слов «верное» и «неверное» часто говорят истинное и ложное. Автор также дает понятие темы (то, о чем говорится) и ремы (то, что сообщается). Во втором пункте автор знакомит ребят с общими утверждениями. Определяются утверждения, в которых все элементы некоторого множества обладают данным свойством, то есть общие утверждения, и утверждения, в которых хотя бы один элемент в заданном множестве обладает определённым свойством, то есть утверждения о существовании. В четвертом пункте автор рассказывает о доказательстве общих утверждений методом перебора, который был уже изучен ранее. Но метод перебора не может быть применен для бесконечных множеств. В связи с этим в следующем пункте автор вводит обозначения, то есть предлагает использовать математический язык.

Материал рассмотренного параграфа применяется в темах, которые автор рассматривает далее. Например, автор рассматривает делимость натуральных чисел. Уже с самого начала, когда он знакомит ребят с основными понятиями, говорится об истинности утверждения: число 27 делится на 3.

В номере 377 нужно из букв, соответствующих истинным высказываниям, составить математический термин.

Во многих заданиях применяется нестандартная формулировка. Например, в 400 номере нужно проверить истинность высказывания:

В пункте «Делимость суммы и разности» в номере 497 ученикам предлагается привести контрпример, опровергающий утверждение:

Если ни одно слагаемое не делится на данное число, то сумма не делится на это число.

В первых четырех параграфах второй главы автор дает понятие делителя и кратного, знакомит с простыми и составными числами, рассматривает делимость произведения, суммы и разности, признаки делимости и возвращается к простым числам, рассматривая их делимость.

Уже в последнем параграфе автор возвращается к логике, где рассматривает равносильность предложений и определения. Автор не дает явного определения равносильным предложениям. Идея такая, что одну и ту же мысль можно выразить по-разному. Автор дает много примеров различного характера и дает к ним пояснения. Также, он применяет ранее изученное, а именно признаки делимости. Далее равносильность предложений используется при изучении признаков делимости.

В учебнике [5] ребята познакомились со многими понятиями. Во втором пункте пятого параграфа автор отмечает, что одно определение можно сказать и записать в разных формах, но всегда определение объясняется через уже известные «старые» слова. Ребята учатся писать на математическом языке уже известные им понятия. Таким образом автор уже сейчас вводит основные кванторы, не делая на них строгий акцент.

2) Дорофеев, Г. В. Математика. класс. В трех частях. Л. Г. Петерсон// М.: «Баласс», «С-инфо», 1998.

Учебник [2] начинается с главы «Язык и логика». В этой главе автор рассматривает понятие отрицания. Явного определения здесь также не дается. Отрицание рассматривается на примере спора двух людей, которые отрицают друг друга. Далее автор приводит не сложные примеры отрицаний, которые оформлены в виде таблицы, что очень удобно для учеников. Автор отмечает, что необходимо культурно и грамотно формулировать отрицание.

Далее автор формулирует закон исключенного третьего.

В следующих двух параграфах рассматривается отрицание общих высказываний и отрицание высказываний о существовании. Здесь ученики учатся формулировать отрицание не только грамотно с точки зрения русского языка, но и для дальнейшего использования в рассуждении. Рассмотренный материал используется уже в следующем параграфе при построении отрицаний утверждений с кванторами, а также часто будет использоваться при построении цепочки рассуждений при доказательстве утверждений и теорем.

Во втором параграфе автор рассматривает понятие переменной, выражения с переменными, предложения с переменными, переменные и кванторы. Здесь он явно дает понятие переменной, выражений с переменной. Здесь же автор знакомит ребят с понятием квантора. Это позволяет ребятам уже сейчас записывать высказывания в компактной, легко обозримой форме. В этом параграфе ученики узнают математический язык как точный язык. Например, ученики имеют возможность узнать о таком факте, что истинное высказывание вообще высказыванием не является. Материал, изученный в рассмотренном параграфе, используется при изучении главы «Арифметика». Здесь во многих задачах необходимо найти значение переменной.

В третьей главе рассматривается понятие логического следования. Понятие дается на примерах из жизни и из математики. В следующих пунктах ученики знакомятся с понятием отрицания логического следования и понятием обратного утверждения.

На данном этапе ученики уже знакомы с понятием равносильности. В следующем пункте автор связывает понятие равносильности с понятием логического следования.

И в последнем пункте автор рассматривает следование и свойства предметов. Рассмотрение данной темы упрощает изучение следующей главы «Геометрия», где при введении различных понятий и утверждений используется логическое следование. Рассматриваются обратные утверждения и отрицание утверждений, их истинность.

Хотелось бы отметить то, что учебник содержит много нестандартных задач с интересными формулировками, много задач на доказательство. Многие задачи даются в виде схем, алгоритмов, таблиц, что развивает зрительное восприятие учеников. Учебник содержит задания для самостоятельной работы, повторения, выделено домашнее задание и задания для работы на уроке. Материал изложен в доступной форме. В конце изученного материала ученики могут проверить свои знания с помощью тестов, «Блиц турниров», игр.

3) Дорофеев, Г. В. Математика. 5 класс . Г. В. Дорофеев, И. Ф. Шарыгин, С. Б. Суворова// Под ред. Г. В. Дорофеева, И. Ф. Шарыгина. - 3-е изд.- М.: Просвещение, 2000. -С. 368.

4) Дорофеев, Г. В. Математика. 6 класс . Г. В. Дорофеев, И. Ф. Шарыгин, С. Б. Суворова// Под ред. Г. В. Дорофеева, И. Ф. Шарыгина. - 2-е изд.- М.: Дрофа, 1997. -С. 416.

Материал учебника разделен на 8 глав, которые подразделены на параграфы и пункты. Упражнения, которые сопровождают теоретический материал, поделены на уровни А и В. В конце каждой главы даны «Задачи для самопроверки», которые включают в себя упражнения отвечающие обязательным требованиям.

Содержание материала богато и разнообразно, позволяет выйти за рамки круга обязательных вопросов. Упражнения разнообразны по форме содержанию и сложности, причем нижний уровень усвоения материала обозначен явно. Это дает возможность учителю дифференцировать обучение.

Очень важная особенность данного учебника - это линейно-концентрическое построение содержания. То есть ко всем важным вопросам учащиеся возвращаются неоднократно, двигаясь по спирали.

Виленкин

Учебник разработан для средней общеобразовательной школы. Авторы придерживаются традиционной формы изложения.

Учебник поделен на главы, каждая из которых имеет несколько параграфов. Параграф начинается с объяснительного текста, затем идут вопросы к нему. Далее даны упражнения для работы в классе по теме данного пункта. Также даны упражнения для домашней работы и упражнения для повторения ранее пройденного материала.

В учебнике выделены сведения, на которые надо обратить внимание, хорошо запомнить, знать наизусть. Также выделена рубрика, где ребята смогут найти рассказы об истории возникновения и развития математики, что заметно повышает интерес к предмету.

В специально выделенной рубрике находятся примеры и пояснения, с помощью которых ребята могут научиться говорить правильно. Также ребята смогут развивать такие качества как внимательность и сообразительность, умение хорошо и быстро запоминать, обладать силой воли с помощью игр и упражнений.

Данный учебник не содержит элементов логики.

1. Согласны ли вы с утверждением:

а) равные фигуры имеют равные площади;

б) неравные фигуры имеют различные площади;

в) любой квадрат есть прямоугольник;

г) некоторые прямоугольники являются квадратами;

д) если периметры прямоугольников равны, то равны и эти прямоугольники?

2. В номере 1494 Ребятам рассказывается о двоичной системе счисления, затем дается следующее задание:

Попробуйте записать в десятичной системе счисления числа, которые в двоичной системе пишутся так:

10; 100; 101; 110; 1110.

Запишите в двоичной системе все натуральные числа от 1 до 15 включительно.

Подумайте, почему двоичная система широко используется в вычислительной технике, но она неудобна в повседневной практике.

3.Цифры 1, 2, 3, 4, 5, 6, 7, 8, 9 расставьте в клетки так, чтобы равенства были верными.

_ _ * _ = _ _ _ =_ *_ _

5) Ончукова, Л. В. Введение в логику. Логические операции. Л. В. Ончукова // Учебное пособие для 5 класса. - 2-е изд.- Киров: Изд-во ВятГГУ, 2004. - С. 124.

Учебное пособие [7] предназначено для работы по программам Открытого лицея и ориентировано на развитие творческих способностей и повышения культуры мышления школьников. Овладение основами логики поможет учащимся в изучении школьных предметов, в том числе на расширенном и углубленном уровне в профильных, гимназических и лицейских классов.

Материал дается в доступной форме, в виде рассказа. В ходе рассказа автор приводит исторические сведения, что вызывает еще больший интерес к теме. Даются все основные понятия, связанные с логикой и необходимые для успешного обучения школьников в 5 классе. После теоретических сведений даются задачи по новой теме для работы в классе, причем автор помогает разобраться в некоторых из них, а к некоторым дает пояснения. После практики автор предлагает написать тест, ответы к которому есть в конце книги. Также предлагается и домашнее задание.

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.