Рефераты. Методика преподавания темы "Элементы логики" в курсе математики 5-6 классов

Методика преподавания темы "Элементы логики" в курсе математики 5-6 классов

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования
Вятский государственный гуманитарный университет

Математический факультет

Кафедра математического анализа и методики преподавания математики

Выпускная квалификационная работа

Методика преподавания темы: «Элементы логики»

в курсе математики 5-6 классов

Выполнила: студентка V курса математического факультета

Попова Элина Николаевна

Научный руководитель:

кандидат педагогических наук, старший преподаватель кафедры математического анализа и МПМ З. В. Шилова

Рецензент:

кандидат педагогических наук, доцент кафедры математического анализа и МПМ И. В. Ситникова

Допущена к защите в государственной аттестационной комиссии

«___» __________2005 г. Зав. кафедрой М.В. Крутихина

«___»___________2005 г. Декан факультета В.И. Варанкина

Киров

2005

ВВЕДЕНИЕ

В наше время очень часто успех человека зависит от его способности четко мыслить, логически рассуждать и ясно излагать свои мысли. Именно поэтому развитие мышления является основной задачей школьного курса обучения. Перед учителем математики стоит задача - не просто давать знания, предусмотренные программой, а способствовать формированию высокого уровня логической культуры учащихся. При этом математика имеет огромные возможности для реализации этой цели.

Но сейчас математика необходима не только как вспомогательное орудие. Ломоносов говорил: «Математику уже, зачем учить следует, что она ум в порядок приводит, она - школа мышления».

Изучение курса математической логики способствует воспитанию культуры логического мышления. Основа логики - это осознание структуры математической науки, ее фундаментальных понятий: аксиомы, доказательства, теории. При построении теории нужно всякий раз отчетливо осознавать, какие утверждения приняты за аксиомы в данном случае, каковы условия и заключения той или иной доказываемой теоремы. За осознанием структуры математической теоремы должно прийти понимание методов ее доказательства. Специальное рассмотрение и уточнение всех этих понятий с привлечением логической символики и примеров способствует ясности мысли по этим вопросам, повышение требовательности к себе, обоснованности аргументации в доказательствах. Ясность мысли приводит к ясности изложения.

Основное приложение логики состоит в использовании ее методов для проведения и проверки рассуждений. Умение правильно рассуждать необходимо в любой человеческой деятельности: науке и технике, юстиции и дипломатии, планировании народного хозяйства и военном деле.

Вторым возможным применением логики является использование ее средств для уточнения языка в электронно-вычислительной технике.

Третий аспект приложений логики условно можно назвать «техническим». Аппарат математической логики используется для анализа и синтеза переключательных схем, имеющих разнообразное применение в технике.

Школьная математика - основа всей математики. Чтобы изучение шло успешно, необходимо усвоить азы. Для этого необходимо, прежде всего, научить решать задачи, особенно логические. Задачи, которые кажутся на первый взгляд простыми, могут потребовать остроумия, смекалки при ее решении. Например, арифметика целых чисел, которую изучают ученики 5-6 классов.

Цель уроков по логике не заучивание правил, а развитие способностей умения рассуждать и делать правильные выводы. Мудрецы в Древнем Китае говорили: «Дай человеку рыбу - он будет сыт один день. Научи человека ловить рыбу - он будет сыт всю жизнь.».

Только решение трудной, нестандартной задачи приносит радость победы. При решении логических задач ученикам предоставляется возможность подумать над необычным условием, рассуждать. Это вызывает и сохраняет интерес к математике. Обдумывание идеи задачи и попытка рассуждать, сконструировать его логически обоснованное решение - лучший способ раскрытия творческих способностей учеников.

Очень важно уже с раннего возраста учить ребят мыслить логически, то есть мыслить последовательно, связно. Прежде всего, это важно для их дальнейшего успешного обучения.

Включение элементов логики в обучение математике способствует естественному расширению математических идей, методов и языка на новые логические объекты, и это расширение способствует лучшему усвоению этих идей, методов и языка.

Предметом исследования этой работы является содержание учебного материала по математике.

Цель - выяснить, каковы возможности и особенности изучения элементов логики учащимися 5-6 классов на уроках математики.

Задачи: 1. Проанализировать учебно-методическую литературу по теме работы;

2. Ознакомиться с особенностями познавательной деятельности учащихся 5-6 классов;

3. Разработать методику формирования некоторых понятий логики у учащихся 5-6 классов.

4.Выявить дидактические особенности обучения математике в 5 классе.

Проблема проводимой работы состоит в необходимости представления универсальных рекомендаций по теме.

Объектом исследования является обучение математике в 5 классе.

Предмет исследования - изучение элементов логики в курсе математики 5 класса.

Гипотеза: использование предложенных в данной работе рекомендаций усиливает подготовку по теме; способствует развитию различных форм мыслительной деятельности, общих интеллектуальных умений и творческих способностей учащихся; ориентирует их на самостоятельную работу в практической деятельности, как на уроках, так и на факультативных занятиях.

Исторический очерк.

Термин «логика» происходит от греческого слова логос, что означает «мысль», «разум», «слово», «понятие».

Основоположником логики как науки является древнегреческий философ и ученый Аристотель (384-322 гг. до н. э.). Он впервые разработал теорию дедукции, то есть теорию логического вывода. Именно он обратил внимание на то, что в рассуждениях мы из одних утверждений выводим другие, исходя не из конкретного содержания утверждений, а из определенной взаимосвязи между их формами, структурами.

Уже тогда в Древней Греции были созданы школы, в которых люди учились дискутировать. Ученики этих школ учились искусству поиска истины и убеждения других людей в своей правоте. Они учились из множества фактов отбирать нужные, строить цепочки рассуждений, связывающие отдельные факты между собой, делать правильные выводы.

Уже с этих времен было принято считать, что логика есть наука о мышлении, а не о предметах объективной истинности.

Древнегреческий математик Евклид (330-275 гг. до н. э.) впервые предпринял попытку упорядочить накопившиеся к тому времени обширные сведения по геометрии. Он положил начало осознанию геометрии как аксиоматической теории, а всей математики - как совокупности аксиоматических теорий.

На протяжении многих веков различными философами и целыми философскими школами дополнялось, усовершенствовалась и изменялась логика Аристотеля. Это был первый, доматематический, этап развития формальной логики. Второй этап связан с применением в логике математических методов, начало которому положил немецкий философ и математик Г. В. Лейбниц (1646-1716 гг.). Он пытался построить универсальный язык, с помощью которого разрешались бы споры между людьми, а затем и вовсе все «идеи заменить вычислениями».

Важный период становления математической логики начинается с работы английского математика и логика Джорджа Буля (1815-1864 гг.) «Математический анализ логики» (1847) и «Исследования законов мышления» (1854). Он применил к логике методы современной ему алгебры - язык символов и формул, составление и решение уравнений. Им была создана своеобразная алгебра - алгебра логики. В этот период она оформилась, как алгебра высказываний и была значительно развита в работах шотландского логика А. де Моргана (1806-1871 гг.), английского - У. Джевонса (1835-1882 гг.), американского - Ч. Пирса и др. Создание алгебры логики явилось заключительным звеном в развитии формальной логики.

Значительный толчок к новому периоду развития математической логики дало создание в первой половине XIX века великим русским математиком Н. И. Лобачевским (1792-1856 гг.) и независимо от него венгерским математиком Я. Бояи (1802-1860 гг.) неевклидовой геометрии. Кроме того, создание анализа бесконечно малых подвело к необходимости обоснования понятия числа как фундаментального понятия всей математики. Довершали картину парадоксы, обнаруженные в конце XIX века в теории множеств: они отчетливо показали, что трудности обоснования математики являются трудностями логического и методологического характера. Таким образом, перед математической логикой встали задачи, которые перед логикой Аристотеля не возникали. В развитии математической логики сформировались три направления обоснования математики, в которых создатели по-разному пытались преодолеть возникшие трудности.

Основоположником первого направления явился немецкий математик и логик Г. Фреге (1848-1925 гг.). Он стремился всю математику обосновать через логику, применил аппарат математической логики для обоснования арифметики, построив первую формальную логическую систему. Кроме того, им и независимо от него Ч. Пирсом были введены в язык алгебры логики предикаты, предметные переменные и кванторы, что дало возможность применить этот язык к вопросам оснований математики. Задачу аксиоматического построения арифметики, геометрии и математического анализа ставил перед собой итальянский математик Дж. Пеано (1858-1932 гг.)

Немецкий математик Д. Гильберт (1862-1943 гг.) предложил другой путь преодоления трудностей в основаниях математики, путь, имеющий в своей основе применение аксиоматического метода. Открытие австрийским логиком К. Геделем (1906-1978 гг.) в 1930-1931 годах неполноты формализованной арифметики показало ограниченность гильбертовской программы обоснования математики. Тем не менее, работы Гильберта и его последователей привели к глубокой разработке аксиоматического метода и окончательному осознанию его фундаментальной роли в математике.

Представители направления, основанного голландским математиком Л. Брауэром (1881-1966 гг.) в начале XX века, предложили отказаться от рассмотрения бесконечных множеств как завершенных совокупностей, а также от логического закона исключенного третьего. Ими признавались только такие математические доказательства, которые конструктивно строили тот или иной объект, и оспаривались чистые доказательства существования. Они построили специфическую математику, имеющую специфические особенности, еще раз подчеркнули различие между конструктивным и неконструктивным в математике.

XX век стал веком бурного развития математической логики, формирования многочисленных новых ее разделов. Были построены различные математические теории множеств, выработано несколько формализаций понятия алгоритма, а сама теория алгоритмов была настолько развита, что ее методы стали проникать в другие разделы математической логики, а также в другие математические дисциплины. Так, на стыке математической логики и алгебры возникла теория моделей. Были созданы многочисленные новые неклассические логические системы. Немалый вклад в развитие математической логики внесли и советские математики Н. А. Васильев, И. И. Жегалкин, А. Н. Колмогоров, П. С. Новиков, А. А. Марков, А. И. Мальцев, С. А. Яновская. Кроме того, в XX веке началось глубокое проникновение идей и методов математической логики в технику, кибернетику, вычислительную математику, структурную лингвистику.

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.