Например, принимающий решение знает с полной определенностью, что 100-долларовый депозит на счете даст увеличение на 100$ в балансе его счета.
2. Принятие решений в условиях риска — принимающий решение знает вероятность появления результата или последствий для каждого выбора. Мы можем не знать, будет ли дождь завтра утром, но мы можем знать, что вероятность дождя — 0,3.
3. Принятие решений в условиях неопределенности — принимающий решения не знает вероятность появления результата для каждой альтернативы. Например, вероятность того, что демократ будет президентом через 20 лет от сегодняшнего дня, неизвестна.
Категории математических моделей. Общая структура проблемы, с которой мы сталкиваемся, количество доступной информации и вид данных, которые мы можем собрать,— все это поможет определить соответствие модели рассматриваемой проблеме.
Перечислим некоторые модели, упомянутые в тексте.
1. Алгебраические модели. Алгебра—это основной математический инструмент, который может быть использован для решения общих операционных проблем, таких, как анализ критической точки и анализ затрата-прибыль.
2. Статистические модели. Поскольку многие решения включают неопределенность, очень важно использовать вероятностное распределение и статистическую теорию. Представлены три вида статистических моделей.
а) Прогнозирование — процесс создания проекций на будущее таких переменных, как продажи, затраты.
б) Контроль качества — помогает измерять и регулировать степень соответствия, до которой продукт или сервис отвечает специфическим стандартам.
в) Теория решений — используется в деревьях решений и таблицах решений, чтобы помочь представить и решить проблемы при условии риска.
3. Модели линейного и математического программирования. Линейное программирование широко используется в решениях о смешивании продуктов, анализе размещения, планировании производства, распределении рабочей силы и других областях операционного анализа. Более общий термин — математическое программирование — также используется в этой книге.
4. Модели теории очередей. Анализ очередей помогает оценить системы сервиса путем определения таких факторов, как длина очереди, время ожидания и коэффициент использования.
5. Имитационные модели. Компьютерная имитация реальных систем — это ценный инструмент для анализа сложных систем сервиса, политики обслуживания оборудования и инвестиционного выбора.
6. Модель запасов. Модели учета запасов используются, чтобы помочь управлять активами фирмы путем выдачи рекомендаций по наилучшему количеству и времени заказа.
7. Сетевые модели. Средства, такие как РЕRT (оценка и средства обзора), СРМ (метод критического пути), помогают менеджерам составить график, контролировать и отслеживать большие проекты, такие как строительство корабля или торгового центра.
Литература:
Козловский В.А. и др. Производственный и операционный менеджмент.
Учебник – СПб: «Специальная Литература», 1998. с.41
Макаренко М.В., Махалина О.М. Производственный менеджмент: Учеб. пособие для вузов.- М.: «Издательство ПРИОР», 1998. – 384 с.
Ричард Чейз и др. Производственный и операционный менеджмент. – М.: Издательский дом «Вильямс», 2001.- 704 с.
2. Прогнозирование
Типы прогнозов и подходы к прогнозированию
Прогнозирование — это искусство и наука предсказания событий будущего. Оно может также использовать исторические данные и проектировать их на будущее с применением математической модели..
Временные горизонты прогнозирования. Прогнозы обычно классифицируются по будущим временным горизонтам, которые они описывают. Три категории, полезные для операции менеджеров, таковы.
1. Краткосрочный прогноз. Такой прогноз охватывает период до одного года, но обычно меньше, чем три месяца. Используется для планирования закупок, работ, уровней рабочей силы, распре деления работ и объема производства.
2. Среднесрочный прогноз. Охватывает обычно период от трех месяцев до трех лет. Используется в планировании сбыта, планировании производства и распределения бюджета, бюджетировании наличности, анализе различных оперативных планов.
3. Долгосрочный прогноз. Обычно на три года и более. Долго срочный прогноз используется в планировании новых товаров, расходов по основным фондам, в определении местоположения завода и его расширения, в исследованиях и разработках.
Организации используют три основных типа прогнозов в планировании своих будущих операций.
1. Экономические прогнозы адресуются бизнес-циклу путем предсказания уровня информации, обеспечения деньгами и других планируемых индикаторов.
2. Технологические прогнозы касаются уровня технологического прогресса, который можно привести к рождению новых товаров, требующих новых заводов и оборудования.
3. Прогнозы спроса — это проекции спроса на товары и услуги компании. Эти прогнозы, называемые также прогнозами сбыта, ведут производство компании, мощности и системы планирования и обслуживаются с входными данными о финансах и маркетинге, о планировании и персонале.
Существуют два основных подхода к прогнозированию:
Первый — это количественный анализ; другой — качественный подход. Количественные прогнозы используют варианты математических моделей, чтобы на основе прошлых данных и/или случайных переменных прогнозировать спрос.
Субъективные, или качественные, прогнозы включают важные факторы, такие как интуицию принимающих решения, эмоции, личный опыт.
Обзор качественных методов. Рассмотрим четыре разные техники качественного прогнозирования.
1. Жюри из мнений исполнителей. Этот метод базируется на мнениях малой группы менеджеров высокого уровня, часто в комбинации со статистическими моделями, результатом чего является групповая оценка спроса.
2. Усиление продаж. В этом подходе каждое лицо, продающее товар, оценивает, какие продажи будут в его регионе; прогнозы затем рассматриваются, чтобы гарантировать их реалистичность.
3. Метод Дельфи. Этот итеративный групповой процесс позволяет экспертам, которые могут занимать различные позиции, создавать прогнозы. Существуют три различных типа участия в процессе метода Дельфи: принимающие решения, штатный персонал и ответственные. Принимающие решения — это обычно группа от пяти до десяти экспертов, которые будут делать текущий прогноз. Штатный персонал помогает принимающим решения перерабатывать, распределять, объединять и суммировать серии вопросов и рассматривать результаты. Ответственные — это группа людей, объединяющих полученные суждения. Эта группа обеспечивает данными принимающих решения перед тем, как делать прогноз.
4. Обзор рынка покупателей. Это метод получения данных от покупателей или потенциальных покупателей, рассматривающих будущие планы своих покупок. Это может помочь не только в разработке прогноза, но также в продвижении проектируемого товара и планировании новых товаров.
Обзор количественных методов. В этой главе мы обращаемся к пяти методам количественного прогнозирования:
1.Простейший метод
2.Метод меняющегося среднего Модели временных серий
3.Экспоненциальное сглаживание
4.Трендовое регулирование
5.Линейная регрессия } Причинная модель
Модели временных серий. Первые четыре из перечисленных называются моделями временных серий. Они предсказывают на базе предположения, что будущее есть функция прошлого. Другими словами, мы видим, что случилось за истекший период времени и используем серию прошлых данных, чтобы сделать прогноз. Если мы предсказываем недельные продажи газонокосилок, мы используем прошлые недельные продажи газонокосилок, делая прогноз.
Причинные модели. Линейная регрессия, причинная модель, объединяет в модели переменные, или факторы, которые могут влиять на количество в будущем периоде. Причинная модель для продаж газонокосилок может включать такие факторы, как новое начавшееся строительство домов, затраты на рекламу и цены конкурентов.
Шаги системы прогнозирования
Дать определение компонентам временных серий
Восемь шагов системы прогнозирования. Кроме методов, используемых для прогнозирования, имеются следующие восемь шагов прогнозирования.
1. Определение пользы прогноза, т. е. какие объекты мы рассматриваем
2. Отбор объектов, которые будут прогнозироваться.
3. Определение временных горизонтов прогноза—является он краткосрочным, среднесрочным или долгосрочным.
4. Отбор модели (моделей) прогнозирования.
5. Сбор данных, необходимых для прогноза.
6. Обоснование модели прогнозирования.
7. Выполнение прогноза.
8. Отслеживание результатов.
Эти шаги следует осуществлять системным путем, инициируя, решая и отслеживая систему EMV прогнозирования. Когда система используется для генерации прогнозов регулярно в течение времени, данные должны быть соответствующим образом собраны, и текущие расчеты прогнозов могут делаться автоматически, обычно на компьютере.
ВРЕМЕННЫЕ ИНТЕРВАЛЫ ПРОГНОЗИРОВАНИЯ
Временные серии базируются на последовательности равных промежутков (недельных, месячных, квартальных и т. д.) между точками данных.
Декомпозиция временных серий. Анализ временных серий ведется посредством разбивания прошлых данных на компоненты и затем проецированием их вперед. Временные серии обычно имеют четыре компоненты: тренд, сезонность, циклы и случайные вариации .
1. Тренд (Т) является градацией повышения или понижения данных за период.
2. Сезонность (5) является моделью данных, которая повторяется через определенные промежутки, измеряемые днями, неделями, месяцами или кварталами (чаще термин «сезонность» относится к наступлению зимы, весны, лета и осени).
3. Циклы (С) — это модели данных, которые встречаются каждые несколько лет. Они обычно связаны с циклами в бизнесе и, главным образом, важны в краткосрочном анализе и планировании бизнеса.
4. Случайные вариации (К) — это «блики» в данных, связанные со случайными и необычными ситуациями; они, следователь но, безразличны для модели.
Существуют две основные формы временных серий моделей в статистике. Наиболее широко используется мультипликативная модель, которая предполагает, что спрос является продуктом четырех компонент:
Спрос =ТхSхСхR.
Аддитивная модель требует прогнозирования суммированием компонент друг с другом. Это выглядит так:
Спрос =Т+S+С+R.
Рис 1. Спрос на товар за четыре года с трендом и сезонными колебаниями.
В большинстве реальных моделей прогнозирующие предполагают, что случайные вариации усредняются за рассматриваемый период. Тогда они концентрируют внимание только на сезонных компонентах и компонентах, которые являются комбинацией тренда и циклических факторов.
Характеристика методов прогноза
1. Простейший метод. Простейший (наивный) метод прогноза предполагает, что спрос в следующем периоде эквивалентен спросу в большинстве текущих периодов. Другими словами, если продажи товара, скажем, сотовых телефонов, были 68 единиц в январе, мы можем прогнозировать, что февральские продажи также будут 68 единиц.
2. Метод меняющегося среднего. Метод меняющегося среднего успешно применим, если мы можем предположить, что рыночный спрос будет довольно стабильным в данном периоде. Четырехмесячное меняющееся среднее находят простым суммированием спроса в течение последних четырех месяцев и делением на четыре. С каждым следующим месяцем текущие месячные данные суммируются с предыдущими данными трех месяцев, а самый ранний месяц вычеркивается. Этот подход сглаживает на кратко срочном периоде нерегулярности в сериях данных.
Страницы: 1, 2, 3, 4, 5, 6