Рефераты. Культуры изолированных клеток и тканей как новый источник для получения лекарственного сырья

Целью настоящей работы было выяснение влияния витамина РР, серосодержащих аминокислот, вомиленина (как предшественника аймалина) и сульфат-иона на накопление алкалоидов, в частности, аймалина в стеблевой культуре ткани раувольфии (клеточная линия А). В качестве контроля использовали регламентную питательную среду (Р). В опытных вариантах в неё вносили 2 или 5 мг/л никотиновой кислоты (среды Н2 и Н5), 10 мг/л метионина или ацетилметионина (среды М и АМ), 1 мг/л вомиленина (среда В). Вомиленин добавляли после автоклавирования среды в асептических условиях, остальные добавки вносили до автоклавирования. Среды S1 и S2 были обеднены неорганической серой: в S1 не вносили сульфат аммония; в S2, кроме того, в 5 раз уменьшили содержание сульфата магния. Опыты проводили на трёх пассажах в десятикратной повторности. После культивирования в течение 70-75 суток при 26±20 биомассу высушивали. В ней титриметрически определяли сумму алкалоидов, фотоколориметрическим методом – аймалин, хроматоспектрофотометрическом – вомиленин.

Результаты опытов приведены в таблице. Они показывают, что добавление к среде никотиновой кислоты не влияло на содержание алкалоидов в биомассе. Снижение содержания в среде сульфат-иона привело к уменьшению количества суммы алкалоидов, аймалина – в 1,5 раза, и к возрастанию (приблизительно в 2 раза) содержания в биомассе вомиленина. При введении в среду серосодержащих аминокислот в 1,2 раза увеличилось общее содержание алкалоидов в биомассе, а содержание аймалина возросло в 2 раза. Добавление вомиленина вызвало накопление в биомассе аймалина при сохранении контрольного уровня содержания суммы алкалоидов. Это вполне согласуется с литературными данными о превращении вомиленина в аймалин.


Накопление алкалоидов в биомассе в зависимости от состава среды

Количество биомассы или алкалоидов

Питательная среда

Р

Н2

Н5

S1

S2

М

АМ

В

Биомасса, г/1л среды

29,0±2,5

27,5±3,3

27,8±4,6

24,6±3,0

27,3±3,8

24,0±2,0

25,6±2,7

25,3±2,7

Сумма алкалоидов

Мг/1л среды

472±31

490±49

506±36

310±32

314±24

463±45

440±38

416±13

% к воздушно-сухой массе

1,63±0,11

1,78±0,18

1,82±0,13

1,26±0,13

1,15±0,09

1,93±0,19

1,72±0,15

1,64±0,05

Аймалин

Мг/1л среды

130±7

115±22

111±19

59±7

82±10

276±23

307±32

207±45

% к воздушно-сухой массе

0,45±0,05

0,42±0,08

0,40±0,07

0,24±0,05

0,30±0,03

1,15±0,12

1,20±0,07

0,82±0,18

% к сумме алкалоидов

28,8

23,6

22,1

19,0

26,1

59,2

69,8

50,0

Вомиленин

Мг/1л среды

116±15

82±1

86±4

150±17

142±19

115±12

128±3

96±10

% к воздушно-сухой массе

0,40±0,05

0,30±0,02

0,31±0,03

0,61±0,07

0,52±0,07

0,48±0,05

0,50±0,01

0,38±0,04

% к сумме алкалоидов

24,5

17,0

17,0

48,4

45,2

24,8

29,0

23,1


Результаты исследования свидетельствуют о том, что накопление алкалоидов в биомассе связано с содержанием в среде как неорганической серы, так и серосодержащих аминокислот. Для получения обогащенной аймалином биомассы целесообразно добавлять к питательной среде метионин и ацетилметионин.


3.4 Алкалоиды каллусных тканей мака прицветникового


Мак прицветниковый (Papaver bracteatum) может быть использован c целью получения тебаина – морфинового алкалоида, являющегося предшественником кодеина и морфина. Тебаин составляет до 98% от суммы алкалоидов P.bracteatum и в лабораторных условиях легко может быть переведён в кодеин наиболее широко распространённое в мире противокашлевое средство.

Литературные данные свидетельствуют о том, что в культуре клеток растений рода Papaver доминируют алкалоиды протопионового, бензафенантридинового и тетрагидропротоберберинового типов, берущих начало от (+)-ретикулина и отсутствуют, либо присутствуют в следовых количествах алкалоиды морфинановой группы, характерные для растений это рода. При повышении уровня дифференцировки может проявляться тенденция к восстановлению спектра алкалоидов, характерного для целого растения.

Целью настоящей работы являлось получение каллусных тканей P.bracteatum, регенерантов из них и сравнение спектров алкалоидов в культуре тканей и в онтогенезе целых растений.

Штамм Р11 был способен к регенерации при культивировании по следующей схеме: каллусная ткань, выращиваемая в темноте, пересаживалась на среду, отличающуюся от исходной отсутствием гормонов, и выдерживалась в течение 30 дней в темноте. При этом в примыкающем к среде слое каллуса образовывались очаги дифференциации, которые затем пересаживали на свежую питательную среду того же состава и выставляли на свет. Через 2-3 недели внутри и на поверхности каллуса наблюдалось появление зачатков зелёных листочков, иногда образовывались корни. По мере формирования листочков регенеранты высаживали на среду Стрита для активации образования корней. При достижении корнями длины 5-10 мм регенеранты высаживали в вазоны со стерильной почвой и переносили в теплицу.

Присутствие в растительных образцах сангвинарина или тебаина определялось с помощью хроматографии хлороформного экстракта лиофилизированной ткани в тонком слое силикагеля, содержащего и не содержащего люминесцентную добавку, для раздельного определение флуоресцирующих и поглощающих зон.

Количественное определение сангвинарина в культуре тканей рассчитывали по экстинкции при 340 нм вытяжки 10%-ной H2SO4 из хлороформного экстракта лиофилизированной ткани. О количестве алкалоида, переходящего в сангвинарин, судили по разности в содержании сангвинарина в подкисленном муравьиной кислотой хлороформном экстракте до и после облучения его светом лампы ДРШ-250 в течение 1 минуты.

От различных частей двулетних растений мака прицветникового кавказской популяции и популяции Arya 11 были получены каллусные ткани. При качественном изучении спектра алкалоидов в каллусных культурах тебаин обнаружен не был, в то время как в тканях всех штаммов присутствовал сангвинарин, не характерный для целого растения. Содержание сангвинарина в тканях колебалось от 0,5 до 1,7%, а в штамме, полученном из цветоноса растения популяции Arya 11, оно составляло 2,7±0,4%. Наряду с сангвинарином в тканях был обнаружен алкалоид, который на свету переходил в сангвинарин. Содержание его в каллусных тканях по отношению к общему содержанию сангвинарина составляло от 11 до 40%.

Изучение спектров целых растений показало, что они способны к синтезу не только тебаина, но и сангвинарина. Тебаин присутствовал во всех частях растений на протяжении всего времени наблюдения за ними, в то время как сангвинарин был обнаружен в листьях растений только первого года жизни, при чём содержание его с возрастом снижалось. В растениях, выращенных в естественных условиях, в пределах своего ареала, сангвинарин обнаружен не был, и биосинтез его является, по-видимому, явлением, не характерным для сформировавшихся растений.

Из этого факта, что растения мака прицветникового способны в определённых условиях продуцировать сангвинарин, следует, что проявление способности к его биосинтезу в культуре тканей данного растения не является случайным. Исследование спектра алкалоидов регенерантов, полученных из каллусной культуры штамма Р11, показало, что они были способны к биосинтезу сангвинарина, а тебаин был обнаружен в листьях растений-регенерантов лишь спустя 5 месяцев после выращивания их теплице.

Таким образом, способность к биосинтезу алкалоидов тебаина и сангвинарина позволяет выделить две противоположные ситуации: культура тканей способна к биосинтезу только сангвинарина, а выращиваемые в природных условиях растения – к биосинтезу одного тебаина. Кроме того, имеются и промежуточные переходные положения, когда биосинтез обоих алкалоидов одновременно идёт в растениях-регенерантах и в ювенильных растениях.



По-видимому, биосинтез сангвинарина связан с ювенильной стадией развития растения и его появление в системе с низким уровнем дифференцировки является, следовательно, закономерным для растений рода Papaver.


3.5 Образование вторичных метаболитов в культуре тканей растений семейства Rutaceae


Многие растения семейства рутовых известны как продуценты физиологически активных соединений. Интерес к этому семейству особенно возрос после обнаружения у некоторых метаболитов Rutaceae противоопухолевой активности. Лечебные свойства руты обыкновенной и близкого, но менее известного вида Boenninghausenia albiflora обусловлены наличием в них кумаринов, фурохиналиновых и акридоновых алкалоидов. Спектры кумаринов и алкалоидов обоих видов в значительной мере подобны, однако в B.albiflora обнаружен неизвестный до сих пор для Ruta акридоновый алкалоид норакроницин, который легко преобразуется in vitro в акроницин, обладающий широким спектром противоопухолевой активности.

Из стерильных проростков семян B.albiflora были получены каллусные культуры, которые проявили различные морфологические признаки при выращивании на среде Мурасиге и Скуга. При длительных пересевах были отобраны штаммы: В1 –гомогенная ткань, В2 –ткань с ризогенезом и В3 –ткань с элементами стеблевого органогенеза.



Для изучения состава вторичных метаболитов, синтезируемых в клетках B.albiflora in vitro, лиофилизированные ткани В1, В2 и В3 экстрагировали метанолом.

Предварительная тонкослойная хроматография (ТСХ) метанольных экстрактов показало наличие множества зон с флуоресценцией, типичной для кумаринов. Из суммы метанол-растворимых веществ были выделены фракции органических кислот, фенольных соединений и лактонов, мешающих обнаружению пренилированных акридонов (рутокредон, норакроницин).

Фракционирование метанольных экстрактов тканей В1, В2, В3

С помощью препаративной ТСХ из фракций выделяли индивидуальные соединения и затем идентифицировали их сравнением с чистыми веществами по хроматографическому поведению и УФ-спектром.

Анализ фракций лактонов показал наличие во всех трех штаммах (в качестве преобладающих компонентов) кумаринов: рутомарина, рутакультина, бергаптена, ксантотоксина, хелиеттина, дафноретина и умбеллиферона. Следует отметить, что кумариновый состав штаммов В1, В2, В3 в значительно большей мере соответствует составу В.japonica (наличие бергаптена, ксантотоксина, рутомарина, умбеллиферона и дафноретина), чем состава В.albiflora, в котором ранее были обнаружены лишь бергаптен, дафноретин, и следы рутомарина. Рутакультин и хелиеттин (дезацитилрутамарин) обнаружены в роде Boenninghusenia впервые.

Из остатков метанольных сумм, обогащенных липидными компонентами и имеющими характерный желтый цвет, были выделены и идентифицированы алкалоиды рутакридон и его водорастворимое производное – глюкозит гравакридондиола. Норакроницин ни в одном из штаммов не был обнаружен.

Штаммы В1 и В3 (гомогенные не дифференцированная ткань и ткань с элементами стеблевого органогенеза) по составу кумаринов и пренилированных акридонов практически не различались, тогда как ткань с выраженным ризогенезом – штамм B2 – характеризовалась значительно большим рутакультина и рутакридона. Содержание рутакридона и глюкозида гравакридондиола, определено методами ТСХ и УФ-спектрометрии, составляло для штаммов В1 и В2 – следы и 0,01; 0,01 и 0,03% соответственно.

Известно, что в культурах клеток Rutaceae в большинстве случаев не теряется способность к синтезу вторичных метаболитов, но их концентрация бывает значительно ниже, чем в органах интактных растений. В некоторых случаях в культуре обнаруживается также изменение в спектре метаболитов, вплоть до появления веществ, не типичных для целого растения. Изменения в спектре вторичных метаболитов в культуре ткани и снижение их концентрации объясняется физиологическими особенностями растительных клеток, не достигающих в культуре in vitro уровня дифференциации, соответствующего уровню специализированных клеток целого растения.

Отсутствие в исследованных штаммах ткани В.albiflora норакроницина, возможно, объясняется именно низким уровнем организации культивируемых клеток. Взаимосвязь физиологической и биохимической дифференциации в культуре клеток В.albiflora доказывается так же тем, что при исследовании ее с помощью люминесцентного микроскопа ярко-оранжевая флуоресценция, характерная для акридоновых алкалоидов, была обнаружена только в резогенном штамме В2. Причем флуоресценция была локализована в корневых трихомах и в некоторых поверхностных клетках корней. Количественное определение акридоновых алкалоидов В1 и В2 также подтверждает это положение.

Таким образом, в штаммах тканях В.albiflora, не содержащих типичного для целого растения алкалоида норакроницина, обнаружены наряду с рутакридоном и глюкозидом гравакридондиола, кумарины и фурокумарины, характерные для растений рода Boenninghusenia, а также новые для рода кумарины – рутакультин и хелиеттин. Количество акридоновых алкалоидов в штаммах зависит от уровня дифференциации ткани.


Заключение


В заключении хочется отметить, что эта тема является очень перспективной для фармацевтической промышленности, так как продуктивность культуры тканей можно регулировать, а значит количество необходимого соединения будет гарантировано. Кроме того культуры защищены от внешних неблагоприятных факторов, способных снизить качество сырья. Процесс сбора и обработки такого сырья значительно упрощается за счёт культивирования только нужной ткани растения в стерильных условиях. Проблемой является трудоёмкий процесс отбора необходимой ткани и разработки среды для получения оптимального результата. Работы которые представлены в данной курсовой – это лишь малая часть, которая не отображает всего масштаба этой темы.


Литература


1.                Бутенко Р.Г. Культура изолированных тканей и физиология морфогенеза растений. М.: Наука, 1964. 272 с.

2.                Бутенко Р.Г. Культура клеток растений и биотехнология. М.: Наука, 1986. 286 с.

3.                Бутенко Р.Г. Биология культивируемых клеток и биотехнология растений. М.: Наука, 1991. 280 с.

4.                Бутенко Р.Г. Клеточные технологии для получения экономически важных веществ растительного происхождения. М.: 1986. с.3-20.

5.                Воллосович А.Г.//Культура изолированных тканей и клеток растений. М.: Наука, 1970. с.234-235.

6.                Действие кинетина на дифференциацию и образование фенольных соединений в каллусной культуре чайного растения / М.Н. Запрометов и др. // Физиол. растений, 1986. T. 33. № 2. С. 356-364.

7.                Запрометов М.Н. Вторичный метаболизм и его регуляция в культурах клеток и тканей растений // Культура клеток растений. М.: Наука, 1981. С. 37-50.

8.                Кунах В.А. Изменчивость растительного генома в процессе дедифференцировки и каллусообразования in vitro // Физиол. растений, 1999. Т. 46. № 6. С. 919-929.

9.                Лекарственное сырьё растительного и животного происхождения. Фармакогнозия: учебное пособие/ под ред. Г.П.Яковлева. СПб.: СпецЛит, 2006. 845 с.



Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.