Рефераты. Культуры изолированных клеток и тканей как новый источник для получения лекарственного сырья

В целом растении обнаружены два типа алкалоидов – хиназолиновые, производные антраниловой кислоты, и индольные b-карболинового типа, производные триптофана. При этом надземная часть растения содержит оба типа алкалоидов, в то время как b-карболиновые алкалоиды характерны в основном для корней растения. Наиболее богаты алкалоидами семена гармалы, в которых содержание этих соединений может достигать 5 – 6 %. Корни растения в ранний период вегетации содержат около 1% алкалоидов, в то время как надземная часть – лишь 0,03%. Характер распределения алкалоидов и изменение их содержания в целом растении в течение его вегетации послужили основанием для высказывания предположения о том, что место синтеза b-карболиновых алкалоидов являются корни гармалы.

Для экспериментальной проверки правильности этой гипотезы были введены в культуру каллусные ткани от гипокотиля и корня проростка гармалы, полученного из семян египетского происхождения. Ткани выращивали на агаризованной среде Мурасиге и Скуга с добавлением 2,4-Д (1 мг/л) и кинетина (1 мг/л). несмотря на то, что каллусные ткани были получены от частей ювенильного растения, они имели некоторые морфологические различия, которые сохранялись в течение четырёхлетнего культивирования: гипокотильная ткань была более плотной и отличалась от корневой ткани своей кремовой окраской, причём в ряде случаев на отдельных участках ткани была заметна яркая красная пигментация. Общим свойством тканей была их относительная гомогенность и отсутствие визуальных признаков дифференциации.

В каллусных тканях гармалы первых пассажей было обнаружено присутствие веществ, имеющих голубую и ярко-жёлтую флуоресценции. При экстрагировании лиофилизированных тканей метанолом и последующем хроматографировании концентрированных экстрактов в тонком слое силикагеля в системе хлороформ : метанол : аммиак (10 : 4 : 1) было показано присутствие в тканях четырёх b-карболиновых алкалоидов – гармина, гармалина, гармола и гармалола, типичных для корней целого растения. Идентификация алкалоидов в каллусных тканях проводилась путём хроматографирования экстрактов с аутентичными образцами алкалоидов в различных системах растворителей и сопоставления спектров поглощения и спектров флуоресценции обнаруженных веществ с соответствующими спектрами чистых алкалоидов.

По своему качественному составу гипокотильная и корневая ткани не различались. Доминирующими алкалоидами в обеих тканях были гармин и гармалол, количественное содержание которых определяли по поглощению в УФ-свете (гармин – при 245 нм, гармалол – при 390 нм).

В условиях оптимального, но недифференцированного роста содержание гармина в каллусных тканях было почти в 500 раз, а гармалола – 20 раз ниже, чем в исходном растении. Концентрация гармина и гармалола была выше в гипокотильной ткани, однако с пассированием эта разница практически нивелировалась, а общее содержание алкалоидов резко снижалось.


Изменение содержания индольных алкалоидов (мкг/г сухой ткани) в каллусных тканях гармалы при культивировании

Номер пассажа

Корневая ткань

Гипокотильная ткань

Гармин

Гармалол

Гармин

Гармалол

5

62,2

89,2

174,1

129,7

7

45,2

11,4

50,2

40,5


С целью регуляции степени дифференциации каллусных тканей гармалы и соответственно образования в них алкалоидов в питательную среду вместо 2,4-Д вводили индолилмасляную кислоту (ИМК) (2 мг/л), а также в ряде случаев произвели замену кинетина на бензиламинопурин (1 мг/л). изменение гормонального состава питательной среды вызывает снижение ростовой активности тканей, увеличение их плотности и проявление в них признаков корневой дифференциации. Длительное субкультивирование тканей на среде, содержащей ИМК, приводило к появлению некрозов у корневой ткани и к прекращению её роста. Гипокотильная ткань сохраняла ростовую активность, однако она была значительно ниже, чем у ткани, растущей на 2,4-Д.

Химический состав каллусных тканей гармалы при перенесении их на среду, содержащую ИМК, показал, что концентрация b-карболиновых алкалоидов в них резко увеличилась. Однако, снижение ростовой активности тканей при проявлении корневой дифференциации не компенсировалась увеличением концентрации алкалоидов, и общая продуктивность тканей при этом практически не увеличилась.


Влияние сочетания различных гормонов на содержание индольных алкалоидов в каллусных тканях гармалы (мкг/г сухой ткани)

Сочетание экзогенных гормонов

Номер пассажа

Корневая ткань

Гипокотильная ткань

Гармин

Гармалол

Гармин

Гармалол

2,4-Д+кинетин

5

62,2

89,2

174,1

129,7

ИМК+кинетин

11

308,1

621,6

212,1

240,0

ИМК+БАП

11

161,1

200,0

262,2

439,2


Ненадёжность изменения состава экзогенных гормонов и нестабильность роста каллусных тканей гармалы при таком способе регуляции их дифференциации и биосинтеза индольных алкалоидов заставили обратиться к генетической трансформации клеток гармалы с помощью Ri-плазмиды Agrobacterium rhizogenes. Для этого использовали дикий штамм А-4, суспензией клеток которого было проведено инфицирование пораненных участков гипокотиля стерильного проростка гармалы.

Через 3 – 4 недели после заражения на месте поранения и инфицирования можно было увидеть образование хорошо растущих адвентивных корней. При вычленении этого участка гипокотиля и его переносе на питательную среду, содержащую антибиотики (клафоран, 500 мг/л), после двух субкультивирований удавалось добиться элиминирования бактерий. Последующее отделение корней и перенесение их на безгормональную питательную среду привело к получению интенсивно растущей ризогенной культуры, которую принято называть культурой «бородатых корней» (“hairy root culture”). О том, что это генетически изменённая культура, свидетельствовал характер образования и роста корней, независимость их роста от экзогенных гормонов и содержание в культуре маннопина.

Ризогенная культура гармалы хорошо росла в жидкой питательной среде при условии её небольшого объёма и постоянного перемешивания. Полное погружение корней в питательную среду и статика не обеспечивали достаточной для роста аэрации культуры. Наилучший рост ризогенной культуры наблюдался на подложках (вискоза и бумажный фильтр), смоченных избытком питательной среды. При таком способе выращивания трёхнедельная культура гармалы достигала 20-кратного увеличения массы.

Генетически трансформированная ризогенная культура гармалы наряду с проявлением корневой дифференциации восстанавливала и способность к биогенезу индольных алкалоидов. Просмотр культур в УФ-свете показывал интенсивную флуоресценцию корней, типичную для гармина и гармалола. Хроматоспектрометрический анализ метанольных экстрактов из ризогенной культуры показал, что она по количественному и качественному составу алкалоидов мало отличается от корней ювенильных растений гармалы. Если при максимальном содержании b-карболиновых алкалоидов в неорганизованно растущих тканях концентрация гармина в них была более чем в 100 раз, а гармалола – в 5 раз ниже концентрации этих алкалоидов в корнях проростка, то в трёхнедельной ризогенной культуре 12-го пассажа концентрация гармина составляла 1/3 от концентрации алкалоида в корнях проростка, а концентрация гармалола превышала концентрацию алкалоида в корнях. При этом восстанавливалось и типичное для корней целого растения преобладание гармина над гармалолом.


Содержание алкалоидов в ризогенной культуре гармалы (мг/г сухой массы корней)

Пассаж культуры

Гармин

Гармалол

12-й пассаж (3-недельная культура)

12,85

2,46

12-й пассаж (5-недельная культура)

19,90

2,01

Корни проростков

50,66

2,16

Стебель проростков

10,85

1,84


Если принять во внимание интенсивность роста ризогенной культуры (20-кратное увеличение массы) и непрерывность её выращивания, то можно увидеть, что продуктивность такой культуры значительно превышает продуктивность ювенильных растений гармалы.

Таким образом, генетически трансформированная культура гармалы, наделённая способностью к синтезу гормонов, обеспечивающих появление корневой дифференциации, характеризуется высоким уровнем содержания b-карболиновых алкалоидов, который вполне сравним с уровнем биосинтеза этих алкалоидов в органах целого растения. Чётко установленная зависимость между корневой дифференциацией и уровнем синтеза b-карболиновых алкалоидов подтверждает правильность гипотезы о локализации образования этих индольных алкалоидов в корнях гармалы. В этом отношении ризогенная культура гармалы наряду с аналогичными культурами белладонны, дурмана, белены и других паслёновых служит примером корнеспецифичности биосинтеза определённых групп алкалоидов.

Результаты, полученные с трансформированной культурой гармалы, показывают возможность и эффективность использования приёмов генетической инженерии не только на растениях семейства паслёновых, но и на растениях других семейств, в которых образование алкалоидов или других вторичных веществ локализовано в корневой системе. Индукция биосинтеза вторичных веществ в таких генетически изменённых культурах может служить реальной основой для получения искусственно выращиваемых растительных систем, продуцирующих те же ценные биологические вещества и на том же количественном уровне, что и целое растение.


3.3 Накопление алкалоидов в культуре ткани раувольфии змеиной


Культура ткани раувольфии змеиной (Rauwolfia serpentina) является перспективным источником аймалина – алкалоида группы индолина, обладающего противоаритмическим действием. Аймалин содержится в смеси алкалоидов биомассы в количестве 30-40%. 40-50% составляет вомиленин – индолениновый алкалоид, который рассматривается как биогенетический предшественник аймалина. Превращение вомиленина в аймалин под действием ферментов, выделенных из клеток раувольфии, в настоящее время осуществлено in vitro и включает в себя гидрирование вомиленина и его метилирование. Источником пиридиннуклеотидов является витамин РР (никотиновая кислота и никотинамид). Перенос метильных групп осуществляется с помощью серосодержащих аминокислот – метионина и ацетилметионина.

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.