Рефераты. Реферат: Различные подходы к определению проективной плоскости


(5)

$ бесконечное множество ненулевых решений этой системы (нулевое решение не определяет прямую). При этом для " решения (С1,С2,С3) справедливо равенство:


Т.е. решения системы (5) образуют единственный класс ненулевых троек. Этот класс определяет единственную прямую С.ч.т.д.

Теорема 2: Две различные прямые имеют единственную общую точку.

Доказательство: Пусть, С={(С1,С2,С3)}, m={(m1,m2,m3)} две различные прямые. Найдем () Х ={(Х1,Х2,Х3)}, лежащую на этих прямых. Достаточно повторить доказательство предыдущей теоремы, заменив Х на С, Y на m, С на Х. Получим, что единственная общая точка Х определяется равенством

Х=С*m (6).ч.т.д.

Теорема 3: Для того, чтобы три () Х,Y,Z лежали на одной прямой, необходимо и достаточно, чтобы

|X,Y,Z|=0 (7), то есть

Доказательство: 1)Необходимость. Пусть () X,Y,Z лежат на одной прямой С. если хотя бы две из них совпадают, то равенство (7) следует из определения смешенного произведения и свойств определителя. Пусть эти () различны. Пользуясь теоремой 1, можно записать C=X*Y. Так как ()Z лежит на прямой C, то CZ=0 Þ (X*Y)Z=|X,Y,Z|=0

2)Достаточность. Пусть выполняется равенство (7). Рассмотрим произведение C=X*Y. Равенство (7) можно записать в виде (X*Y)Z=0, то есть CZ=0 Þ ()z лежит на прямой C проходящей через () X и Y. Равенство (7) не зависит от выбора представителей точек.

Теорема доказана.

Теорема 4: Для того, чтобы три прямые c, m, n проходили через одну () необходимо и достаточно, чтобы

|c,m,n|=0(8)

Для троек действительных чисел понятие линейной зависимости и линейной независимости определяется так же, как и для векторов. Пусть тройки x,…, x линейно зависимы. Легко проверить, что " другие тройки x,…, x, принадлежащие тем же классам, тоже линейно зависимы. Поэтому классы троек (точки) линейно зависимы, если линейно зависимы какие-нибудь представители этих классов.

Из теорем 3 и 4 следуют две теоремы.

Теорема 5: Для того, чтобы три () лежали на одной прямой, необходимо и достаточно, чтобы они были линейно зависимы.

Теорема 6: Для того, чтобы три прямые проходили через одну (), необходимо и достаточно, чтобы они были линейно зависимы.

2.3. Теорема Дезарга.

На проективной действительной плоскости имеет место теорема Дезарга.

Теорема Дезарга: Если прямые проходящие через соответствующие вершины двух трехвершинников пересекаются в одной точке, то точки пересечения соответствующих сторон этих трехвершинников лежат на одной прямой.

P=ABÇ A'B',Q=ACÇ A'C',R=BCÇ B'C',AA'Ç BB'Ç CC'=Q

P,Q,R лежат на одной прямой.

Доказательство: Введем проективную систему координат, примем () А,В,С,О за фундаментальные:


А(1,0,0), В(0,1,0), С(0,0,1), О(1,1,1)

Координаты ()А'- есть линейная комбинация координат ()А и ()О, так как А¹ А', то а'=a А + d q

Можно положить d =1. Тогда получаем А'=a А +q . Тоже самое относится и к другим вершинам трехвершинника A'B'C'. Поэтому А'(a +1,1,1), В'(1,b +1,1), С'(1,1,g +1) уравнение прямой АВ:



так как R= BCÇ B’C’


С помощью условия коллинеарности трех () убедимся, что () P,Q,R лежат на одной прямой.

Имеем

Условие коллинеарности выполнено, следовательно, P,Q,R Î одной прямой.

Теорема доказана.

Глава 3. Аксиоматическое построение проективной плоскости.

3.1. Аксиоматика аффинной плоскости.

Начнем с некоторых наиболее простых фактов обычной плоской геометрии, которые мы применим в качестве аксиом при синтетическом построении теории.

Определение: Аффинной плоскостью называют множество элементов, именуемых точками и систему его подмножеств, именуемых прямыми, причем должны выполнятся три формулируемые ниже аксиомы А1-А3.

А1: Для " двух различных точек Р и Q $ единственная прямая, проходящая через них.

Две прямые называются параллельными, если они совпадают или не имеют общих точек.

А2: Для " заданной прямой l и точки Р $ одна и только одна проходящая через Р прямая m: m || l

А3: $ три неколлинеарные точки (Точки Р1,Р2,…Рn называются коллинеарными, если $ прямая l, что все эти точки ей принадлежат).

Пример: Евклидова плоскость Е2 удовлетворяет аксиомам А1-А3, то есть является аффинной плоскостью.

Пример: Аффинная плоскость имеет, по крайней мере, четыре различных точки; плоскость состоящая ровно из четырех () существует.

Действительно в силу А3 на плоскости есть три неколлинеарные точки; обозначим их через P,Q,R. Согласно А2, $ прямая l , проходящая через Р и параллельной прямой QR, соединяющей Q и R (эта прямая $ по А1). Точно так же доказывается $ прямой

m || PQ, проходящей через R.

Покажем теперь, что l || m.

же S¹ R. Таким образом, четвертая () S необходимо должна существовать и наше первое утверждение доказано.


Теперь рассмотрим прямые PR и QS. Они могут пересекаться, но они могут и не пересекаться - это не противоречит аксиомам.

В этом случае мы получаем аффинную плоскость, содержащую ровно четыре () P,Q,R,S и шесть прямых PQ,РR,PS,QR,QS,RS.

Аксиомы А1-А3 здесь выполняются, таким образом, мы получим аффинную плоскость
, содержащую наименьшее возможное число (), а именно, четыре.

3.2. Аксиоматика проективной плоскости.

Определение: Проективной плоскостью S называют множество, элементами которого именуются точками, и набор его подмножеств, именуемых прямыми, если при этом выполняются следующие четыре аксиомы.

П1.Через две различные точки P и Q плоскости S можно провести единственную прямую.

П2. " две прямые пересекаются по меньшей мере в одной точки.

П3. $ три неколлинеарные точки.

П4. Прямая содержит, по меньшей мере, три точки.

3.3. Модели проективной плоскости.

1)Рассмотренная ранее расширенная евклидовая плоскость есть модель проективной плоскости.

Доказательство: Проверим выполнение четырех аксиом П1-П4.

П1. Пусть P и Q Î

1. Если Р и Q - собственные (), то через них можно провести только одну прямую.

2. Если Р - собственная точка p , а Q- несобственная точка, то по аксиоме А2 $ прямая m, такая, что РÎ m и m || l, так , что Q Î пополнению прямой m до прямой из p . Прямая m -единственная прямая p , проходящая через Р и Q.

3. Если Р и Q несобственные (), то через них проходит единственная несобственная прямая.

П2. Пусть заданы прямые l и m.

1.Если l и m - несобственные прямые и l || m, то они пересекаются в некоторой точке. Если l || m, то они пересекаются в несобственной точке Р¥ .

2.Если l - собственная прямая, а m - несобственная прямая, то они пересекаются в несобственной точке Р¥ .

П3. Непосредственно следует из А3. Необходимо только проверить, что если Р и Q и R неколлинеарны в А, то они не будут коллинеарны в p . Действительно, в p $ только одна (несобсвтенная) прямая, не принадлежащая А, но () Р,Q,R ей не принадлежат.

П4. Каждая прямая плоскости А содержит хотя бы две (). Но в p каждая прямая содержит еще и несобственную точку, поэтому она содержит не менее трех точек.

2) Пополняя аффинную плоскость А из четырех (), мы получим проективную плоскость S1 из семи точек.

Докажем это: Проверим выполнение четырех аксиом П1-П4.


Определим () пересечения прямых АВÇ CD=, BCÇ AD=, АCÇ BC= , , Î одной несобственной прямой.

П1. Через две различные () плоскости можно провести единственную прямую.

Если А,В - собственные (), то через них можно провести только одну прямую из А. () А,В Î несобственной прямой, поэтому и в S1 через них можно провести единственную прямую.

Рассмотрим А- собственная () и - несобственная (). Через эти точки проходит единственная прямая, так как () определена как пересечение прямых АВ и CDÞ N¥ Î АВ.

Пусть имеем не собственные точки, через них проходит несобственная прямая S1 и она единственная.

П2. " две прямые пересекаются по меньшей мере в одной точке.

Справедливость аксиомы П2 следует из определения S1.

П3. $ три неколлинеарные точки.

Непосредственно следует из построения аффинной плоскости А. А мы дополнили точками , , (несобственными, которые принадлежат одной несобственной прямой). И поэтому точки не коллинеарные в А будут неколлинеарные в S1.

П4. Каждая прямая плоскости А содержит хотя бы две точки. В S1 каждая прямая содержит несобственную точку. Следовательно прямая в S1 содержит не менее трех точек.

Все аксиомы проективной плоскости выполняются, следовательно, S1 - проективная плоскость.

3) Связка прямых евклидова трехмерного пространства - модель проективной плоскости, построенной на аксиомах П1-П4.

4) Действительная проективная плоскость (множество упорядоченных троек действительных чисел, одновременно не равных нулю), рассмотренная ранее, удовлетворяет аксиомам П1-П4.

3.4. Теорема Дезарга.

Одним из важных результатов проективной геометрии является теорема Дезарга, которая утверждает следующее:

П5 (теорема Дезарга)

Если прямые проходящие через соответственные вершины двух трехвершинников пересекаются в одной (), то () пересечения соответственных сторон этих трехвершинников лежат на одной прямой.


P=ABÇ A’B’AA’Ç BB’Ç CC’=0

Q=ACÇ A’C’

R=BCÇ B’C’

P,Q,R лежат на одной прямой.

В рамках теории, которую мы строим, не совсем правильно называть это утверждение “теоремой”, потому что нельзя доказать, исходя только из аксиом П1-П4. Примем это утверждение за аксиому П5. Хотя при первом и втором способе построения проективной плоскости это утверждение выступает как теорема.

Покажем, что П5 не есть следствие П1-П4, а именно, построим геометрию, удовлетворяющую аксиомам П1-П4, но не удовлетворяющую П5.

Определение: Конфигурацией называют множество элементов, именуемых точками, и набор его подмножеств, именуемых прямыми, если при этом выполняется аксиома.

К1. Две различные () принадлежат не более чем одной прямой.

Отсюда следует, что две различные прямые имеют не более одной общей точки

Примеры: Любая аффинная и " проективная плоскость являются конфигурациями. Набор 10 точек и 10 прямых теоремы Дезарга - тоже конфигурация.

Пусть p 0- некоторая конфигурация. Мы определим свободную проективную плоскость П, порожденную p 0.

Пусть p 1- новая конфигурация, определенная следующим образом. Точками p 1 являются точки p 0. Прямыми p 1 являются все прямые p 0; кроме того, каждая пара точек Р1, Р2Î p 0 не принадлежащая прямой из p 0, задает новую прямую

í Р1, Р2ý из p 1. Тогда p 1 обладает следующим свойством;

а) " две различные ()p 1 принадлежат одной прямой. Построим p 2, исходя из p 1, следующим образом. Точками p 2 служат все точки p 1; кроме того, каждая пара непересекающихся прямых l1,l2 задает новую точку ll2. Прямыми p 2 служат прямые p 1, пополненные новыми точками; например, () ll2 Î дополненным прямым l1 и l2. Тогда p 2 обладает следующим свойством.

б) " две различные прямые имеют общую точку; продолжим это построение. Для четных n мы построим p n+1 из p n, добавляя к прямым p n новые прямые; для нечетных n мы построим p n+1 из p n, добавляя к () p n новые точки.

Пусть теперь П= È p n

Элементы конфигураций p n мы назовем точками П; далее, прямой П мы назовем подмножество П, такое, что LÇ p n есть прямая из p n для всех достаточно больших n.

Предложение 1: Если p 0 содержит по меньшей мере четыре точки, никакие три из которых не принадлежат одной прямой, то П - проективная плоскость.

Доказательство: p n удовлетворяет б) для четных n и удовлетворяет а) для нечетных n Þ на П выполняются оба свойства а) и б), то есть П удовлетворяет П1 и П2. Если P,Q,R неколлинеарны на p 0, значит, П3, тоже выполняется.

Покажем, что в П каждая прямая содержит хотя бы три точки.

Каждая прямая из П определяется двумя точками.

По П2: " две прямые имеют общую ()

Пусть l: í P1,P2ý , m: í P3,Р4ý ; по П2: lÇ m=PPl, Pm

Получим, каждая прямая содержит хотя бы три точки.

Все аксиомы проективной плоскости выполняются Þ П- проективная плоскость.

Определение: Ограниченной конфигурацией называется конфигурация, у которой каждая () принадлежит не менее чем трем прямым, а каждая прямая содержит не менее трех различных точек.

Пример: Конфигурация теоремы Дезарга ограничена.

Предложение 2: " конечная ограниченная конфигурация из П содержится в p 0.

Доказательство: Уровнем () РÎ П мы назовем наименьшее 0,такое, что РÎ p n. Уровнем прямой П мы назовем наименьшее 0, такое, что LÇ p n - прямая.

Пусть S - ограниченная конечная конфигурация из П, и пусть n- максимальный из уровней всех точек и всех прямых из S .

Предположим, что n - уровень какой-то прямой LÍ S (Если максимальный уровень достигается для точки, то доказательство аналогично).

Тогда lÇ p n - прямая, а lÇ p n-1 не является прямой. Если n=0, то все доказано, S Í p 0. Предположим, что n>0. Тогда l возникла как прямая, соединяющая две () из p n-1, не принадлежащие в p n-1 одной прямой. Но в S уровень всех точек £ n, а значит, они принадлежат p n, то есть l содержит не более двух таких точек. Полученное противоречие и доказывает наше предложение.

Пример: Недезаргова проективная плоскость.

Пусть p 0 состоит из четырех точек и не содержит ни одной прямой, П- свободная проективная плоскость порожденная p 0.

В качестве следствия из предыдущего предложения получаем, что П бесконечно; следовательно," прямая содержит бесконечно много точек. Значит можно выбрать четыре () О,А,В,С, " три из которых неколлинеарны, и затем А’на ОА, B' на ОВ, С’ на ОС так, что они образуют семь различных точек, причем A’,B’,C’ неколлинеарны. Тогда построим Р=АВÇ А’В’, Q=ACÇ A’C’, R=BCÇ B’C’. Все 10 точек различны. Если теорема Дезарга была бы не верна на П, то P,Q,R принадлежали бы одной прямой, Þ 10 () и 10 прямых образовали бы ограниченную конфигурацию; но тогда она должна была бы содержаться в p 0, а p 0 содержит всего лишь четыре точки.

Построили геометрию, удовлетворяющую аксиомам П1-П4 и не удовлетворяющую П5, тем самым показали, что П5 не является следствием П1-П4.

3.5. Принцип двойственности

Займемся изучением свойств проективной плоскости, вытекающих из аксиом П1-П4.

Предложение: Пусть П - проективная плоскость, П*- множество прямых плоскости П; назовем еще пучок прямых плоскости П прямой из П*.(здесь П*- это множество элементов из П, называемых прямыми; пучком прямых называется совокупность всех прямых, проходящих через некоторую фиксированную точку- центр пучка). Тогда П* тоже является проективной плоскостью (назовем ее двойственной к П проективной плоскостью); при этом, если П удовлетворяет аксиоме П5, то и П* ей удовлетворяет.

Следствие (принцип двойственности).

Пусть S- некоторое утверждение, касающееся проективной плоскости П, которое может быть выведено из аксиом П1-П4 (соответственно П1-П5). Тогда "двойственное" утверждение S*, полученное из S заменой слов.

точка Û прямая

лежит на Û проходит через

коллинеарные Û сходящиеся

точка пересечения двух прямых Û прямая, соединяющая две точки

и т.д., тоже может быть выведено из аксиом П1-П4 (соответственно П1-П5).

Определение: Полным четырехугольником называется конфигурация, состоящая из семи точек и шести прямых, полученных следующим образом: рассмотрим четыре точки А,В,С,D (такие, что любые три из них неколлинеарны), шесть соединяющих их прямых и три новые точки пересечения этих прямых.

("противоположных сторон" полного четырехугольника) Р=АВÇ СD, Q=АСÇ ВD, R=АDÇ ВС.

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.