Рефераты. Аналіз та статистичне моделювання показників використання вантажних вагонів

Y-- середньодобова продуктивність вагона, експл. ткм нетто;

X(qrg)-- динамічне навантаження навантаженого вагона, т/ваг;

V-- середня дільнична швидкість, км/год;

Z простій вагона під однією вантажною операцією, год;

1/Z -- обернена величина Z, в модель закладено гіперболічну

залежність від Y.

В таблиці 3 (допоміжних розрахунків) наведено відповідно:

-- квадрати вихідних показників (гр. гр. 1-4);

-- добутки Yокремо з кожним факторним показником (гр. гр. 5-7);

-- добутки факторних показників між собою попарно (гр. гр. 8-10).

3. Побудова статистичної моделі середньодобової продуктивності вантажного вагона (FW)

Для виявлення кількісного впливу факторних чинників на узагальнюючий (інтегральний) показник використання вантажних вагонів Fw, як відмічено вище, проведено статистичне моделювання (кореляцій-но-регресійний аналіз). Попереднє дослідження статистичних звітних матеріалів усіх залізниць України (вибірка -- 48 спостережень, див. таблицю вихідної інформації (табл. 2) довело, що саме ці чинники мають тісний імовірнісний зв'язок з результативною ознакою (Y).

Так, парні коефіцієнти кореляції -- r (міра щільності зв'язку) між результативною ознакою Y і факторним чинником Vrw, між Y та 1/Z-- rгш= 0,541, між Y і X-- від'ємне значення rYX= --0,449 (Y і X функціонально пов'язані). Це досить щільний зв'язок, що свідчить про суттєвий вплив відібраних до складу моделі факторів на середньодобову продуктивність вантажних вагонів.

У той же час, між самими факторами V і 1/Z спостерігається незначний рівень тісноти зв'язку (Z=0,0129), тобто вони не дублюють один одного і не викривлюють величину впливу факторів на результативний показник.

У досліджуваній статистичній моделі середньодобової продуктивності вантажного вагона Fw трьохфакторне рівняння регресії має такий загальний вигляд:

Y= a0+a1X+a2(1/z)+a3V. (4)

Числові значення параметрів цієї моделі 0, а1 а2, а3) визначаються методом найменших квадратів за допомогою системи нормальних рівнянь. Вони повинні задовольняти вимозі найменшої суми квадратів відхилень фактичних значень у від теоретичних значень Y, розрахованих за рівнянням регресії:

?(Vф-Y)2 =тіп. (5)

Система нормальних рівнянь складається за загальними правилами математичної статистики:

(6)

Для визначення числових значень параметрів рівняння регресії 0, аь а2, а3) у систему нормальних рівнянь (6) підставляються підсумкові дані таблиць вихідних та допоміжних розрахункових даних (табл. 2, 3): Y, X, V, 1/Z -- значення першого ступеня (гр. 1, 2, 3, 5 табл. 2), їх квадратів, добутків результативного показника К окремо з кожним фактором та добутків факторних показників між собою попарно (табл. 3):

48а0 +2914,96а1 + 1.5173а2 + 1633.7а3 =258864,0

2914,9 а0+177179.5673 а1+91.96977 а2+ 99065.3 а3= 15637930.18 (7)

1,5173а0+91.9698а1+0.053484а2+ 51.6692 а3=8767.56

1633,7а0+99065.3а1+ 51.6692а2+ 56396.3а3=9096838,6

Розв'язання цієї системи нормальних рівнянь дає такі числові значення параметрів рівняння регресії:

а0= -3663,3565; а1= -94,3096; а2= 101274,5932; а3= 340,3005.

Підставивши ці значення в рівняння (4), отримуємо модель середньодобової продуктивності вагона:

YK1/Z,v= - 3663,36 - 94,31X+101274,59(1/Z)+340,31V. (8)

Параметри отриманого рівняння множинної регресії (8) показують ступінь впливу кожного фактору на досліджуваний показник (Y) при фіксованому (середньому) значенні всіх інших факторів, які входять до складу моделі. За цих умов зі зміною факторної ознаки на одиницю результативна ознака змінюється в середньому на величину параметра (коефіцієнт регресії). Найбільший вплив на зміну Y має дільнична швидкість (пряма залежність), простій вагонів під вантажними операціями (гіперболічна залежність), про що свідчать парні коефіцієнти кореляції rvi та rп та коефіцієнти еластичності Е =, які показують середній відсоток зміни результативної ознаки у процентах при зміні чинника впливу на 1% при фіксованих значеннях інших факторів даної моделі. Так, для оцінки впливу простою вагона під вантажними операціями розраховуємо коефіцієнт еластичності E1/z:

E1/z = =101274,59 = 0.593.

Це значить, що при зменшенні простою вагона на 1% або на 0,35 год. (див. табл. 1, гр. 4: Z=35,24 год.) середньодобова продуктивність вагона, в середньому, збільшується (гіперболічна залежність % із 1) на 0,59%.

Для дільничної швидкості коефіцієнт еластичності:

EV = =340,31 = 2,15,

тобто збільшення дільничної швидкості на 1% спричиняє приріст середньодобової продуктивності вантажного вагона у середньому на 2,15%.

Для розрахунку множинного коефіцієнта кореляції R який характеризує щільність зв'язку результативного показника (Y) з сукупністю факторних чинників, використовується формула коефіцієнта множинної кореляції, в якій коефіцієнти регресії при чинниках подаються в стандартизованому вигляді в [5]:

RY = (9)

аj -- параметри прямого рівняння регресії, а1 (при Х), а2(при 1/Z) і а3 (при V); вi -- параметри стандартизованого рівняння, в якому факторні чинники виражені в стандартизованих величинах (ti=(XrX)/уxi);

уУ-- середнє квадратичне відхилення результативного показника (Y);

уi - середнє квадратичне відхилення відповідного чинника моделі (X,

ггх' rY- ' гп -- коефіцієнти кореляції між Y і відповідно X, 1/Z і V.

Чим ближчий коефіцієнт множинної кореляції R до 1, тим тісніший зв'язок між ознакою та чинниками впливу (X, 1/Z, V). Підставивши у ф. (9) значення в із ф. (10) отримуємо такий вираз R:

RУ,х,у2у = (11)

У ф. (11) вносимо числові значення множників:

RУ,х,у2у = = 0,88

Підкоренева величина R2(0,77546) називається коефіцієнтом детермінації.

Множинний коефіцієнт кореляції R=0,88 свідчить про адекватність обраного рівняння регресії та високий ступінь щільності зв'язку між результативним показником Y(FW) і чинниковим комплексом впливу (X, 1/Z,V), а коефіцієнт детермінації R2=0,775 показує, що зміна Y на 77,5% залежить від варіації використаних у моделі (8) факторів, на інші чинники припадає лише 22,65% впливу.

Достовірність і надійність отриманого R перевіряється за критерієм Фішера. Розрахункове значення цього критерію Фг для використаних у моделі даних (числа спостережень = 48, кількості факторів =3) і R2=0,775 має величину 50,84, що значно перевищує табличне (критичне) його значення за цих умов Фгаб=2,39) і підтверджує істотність і надійність дослідженої моделі (8). Отже, ця модель може бути використана для практичних розрахунків нормативного значення середньодобової продуктивності вантажного вагона Fw.

Виходячи із конкретних звітних даних залізниці про середню величину якісних показників, задіяних у досліджуваній моделі, можна визначити для будь-якої залізниці нормативну величину середньодобової продуктивності вантажного вагона (Fw), а відтак планувати необхідний робочий парк вантажних вагонів (Б nrb) для освоєння заданого експлуатаційного вантажообороту нетто (? РІ)п, оскільки:

?nrh = ?(Pl)n/Fw. (12)

Порівняння розрахованого нормативного значення Fw з його фактичним рівнем дозволяє оцінити ефективність використання робочого парку вагонів на залізниці.

Таблиця 3. Допоміжні розрахункові дані

№ спостер.

У2

(1/Z?

XX

YV

)'.(l/Z)

X-V

X-(\/z)

(ifz)-y

А

1

2

3

4

5

6

7

8

9

10

І

6110784.0

3953,4862

1004.89

0.00056

155431,34

78362.40

58,6616

1993,19

1,492

0,75225

.2

5414929,0

3970.9551

961.00

0,00046

146637,10

72137,00

49,9571

1953,48

1,352

0,66552

3

7059649,0

3964,4932

998,56

0,00055

167295,94

83961,20

62,0794

1989,67

1,471

0,73832

4

10004569,0

4015,9283

1082,41

0,00086

200443,59

104062,70

92.7022

2084,92

1,857

0,96424

5

11215801,0

4069,0389

1115,56

0,00094

213629,42

111856,60

102.6356

2130,55

1,954

1,02360

6

12802084,0

3983,2607

1115,56

0,001 15

225818,60

119505,20

121,2881

2107,98

2,139

1,13220

46

37332100,0

3458,4728

967,21

0,00246

359321,65

190021,00

302,9251

1828,95

2,915

1,54189

47

46131264,0

3414,0224

1017,61

0,00302

396854,09

216664,80

373,3920

1863,91

3,212

1,75371

48

52186176.0

3408,3803

1056,25

0,00412

421746,76

234780,00

463,6714

1897,39

3,747

2,08601

У

16078979760

177179,56

56396,3

0,053484

15637930,

9096838,6

8767,560

99065,3

91,96

51,6692

середня

33497874,5

3691,2409

1174,9

0,00111

325790,21

189517,5

182,6575

2063,9

1,916

1,076

Якщо в рівняння регресії (8) підставити середні значення факторних показників Х(60,73), 1/Z(0.0316) і V(34,035), то в результаті розрахунку отримаємо середнє значення теоретичного Y=5393,0 (яке тотожне фактичному Y, див. табл. 1).

Y = -3663.36 - 94,31 * 60,73 +101274.59(9.0316)+ 340,3 * 34,035 = 5393,0 ткм/ваг. за добу (див. гр. 1 табл. 1),

що підтверджує правильність розрахунків ф. (8) та тезу про вплив чинників на зміну середньої величини результативної ознаки.

Щоб отримати нормативне значення У, для кожного із 48-ми спостережень вибіркової сукупності, на базі якої розраховувалась статистична модель середньодобової продуктивності вантажного вагона, підставляємо у формулу (8) фактичні значення чинників X, 1/Z, V відповідного спостереження (гр.гр. 2-4 табл. 1). У подальшому теоретичні значення У,- використовуються для розрахунків щільності зв'язку факторних чинників з результативним показником (ф. 11), а також для аналізу ефективності використання вантажних вагонів.

Висновки

1.Застосування методу статистичного моделювання технічних нормативів експлуатаційної роботи залізниць, у тому числі продуктивності вагона (Fw), дає можливість більш обґрунтовано аналізувати ефективність роботи залізниць, оскільки саме від рівня якісних показників використання рухомого складу, особливо від простою вагонів на станціях під вантажними операціями, дільничної швидкості руху поїздів тощо, -- залежить величина Fw, результати роботи та витрати на її виконання.

2. Запропонований метод можна застосовувати для статистичного моделювання нормативів середньодобової продуктивності локомотивів та інших інтегральних показників роботи і використання рухомого складу залізничного транспорту.

3. Метод моделювання технічних нормативів показників експлуатаційної роботи залізниць може бути застосовано при викладанні у вищих навчальних закладах, науковій і практичній роботі.

Література

1. Гойхман ІМ. Статистика залізничного транспорту. Ч.І.: Навчальний посібник. -- К: ДЕТУТ, 2007. -- 105с.

2. Гойхман ІМ. Статистика залізничного транспорту. Ч.П.: Навчальний посібник. -- К: ДЕТУТ, 2008. -- 205 с.

3. Макаренко MS. Краткий справочник показателей эксплуатационной работы железных дорог Украины. -- К.: «Юникон-Пресс», 2001. -- 754 с.

4. Поликарпов А.А. и др. Статистика железнодорожного транспорта: Учебник. -- М.: Маршрут, 2004. -- 512 с.

5. Венецкий И.Г., Кильдишев Г.С. Теория вероятностей и математическая статистика: Учебное пособие. -- M: Статистика, 1975. -- 264 с.

6. Залізничний транспорт України на порозі реформування/ ЮМ. Цветов, М.В. Макаренко, АД. Лашко та інУ К.: -- ДЕТУТ, 2008. -- 189 с: іп.: Бібліограф.: с. 187-189.

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.