Рефераты. Аналіз та статистичне моделювання показників використання вантажних вагонів

Тобто зазначені три показники мають функціональну залежність з результативним показником. Більш того, аш-- первинний чинник прямого впливу на результат використання вагона як за потужністю, так і за часом. Із цих же міркувань у даній моделі неможливо використати і показник статичного навантаження вагона та співвідношення середньої відстані перевезення вантажів і навантаженого рейсу вагона, бо вплив кожного з них уже присутній у фактичних величинах Fw, за якими розраховується рівняння регресії (8).

Оскільки розглянуті чинники знаходяться в прямому функціональному зв'язку з середньодобовою продуктивністю вантажного вагона, то їх кількісний вплив на зміну в часі результативного показника слід визначати через систему співзалежних індексів:

I Fw=I qrh*ISw*Iaw (2)

У моделі кореляційно-регресійного аналізу характеристикою зв'язку є теоретична лінія регресії, що описується рівнянням регресії y=f(x).

Рівняння регресії відображає закон зв'язку між х і у не для окремих елементів сукупності, а для всієї сукупності в цілому. Однофакторна статистична модель (лінійне рівняння регресії) має вигляд:

Y = a + bX. (3)

У рівнянні регресії коефіцієнт b -- величина іменована, має розмірність результативної ознаки Y. Розглядається як коефіцієнт пропорційності при X, він визначає ефект впливу X на Y, тобто вказує на скільки одиниць, в середньому, зміниться К зі зміною X на одиницю. У випадку прямого зв'язку b -- величина додатна, а при зворотному -- від'ємна. Параметр а0 -- вільний член рівняння регресії, це значення У при Х=0, у деякій мірі характеризує вплив на У факторів, які відсутні в моделі (8).

Коли в модель включається декілька факторних чинників, маємо рівняння множинної регресії типу у=f(х12,...хn), яким визначається спільний вплив цих чинників на зміну в середньому результативної ознаки. _

Розрахунку рівняння множинної регресії передує обчислення величини парних коефіцієнтів кореляції між Y та Х(rух) та між самими факторами (Zxv, ZX1/Z). Це дозволяє визначити не тільки щільність зв'язку, але й оцінити роль кожного фактора. Фактори, які мають незначний коефіцієнт кореляції з Y, не бажано включати в множинну регресійну модель. їх вплив буде несуттєвим.

Модель необхідно розраховувати за достатньо великою сукупністю спостережень (п?40), відібраних випадковим способом.

Щільність зв'язку між результативною ознакою У і чинниками впливу (X,Z тощо) вимірюється множинним коефіцієнтом детермінації R2 і індексом кореляції R, а істотність зв'язку -- розрахунковим числом Фішера ФR, яке повинне перевищувати табличне (критичне) значення Фтаб.

Таблиця 2. Вихідна інформація для розрахунку статистичної моделі F„

Y

X <

V

7.

I/Z

Y

X <)

V

Z

1/7.

А

1

2

3

4

5

А

1

2

3

4

5

1

2472,0

62.88

31.7

42,14

0,0237

26

4735.0

58,17

39,7

52,29

0,0191

2

2327,0

63,02

31,0

46,58

0.0215

27

6576,0

58,69

40,3

43.36

0,0231

3

2657,0

62.96

31,6

42.80

0,0234

28

7319,0

58,83

41,9

41,00

0,0244

4

3163,0

63,37

32,9

14.12

0,291

29

8184,0

59,09

45.6

36,90

0,0271

5

3349,0

63,79

33,4

32,63

0,0306

30

8986,0

58,56

43,4

32,17

0,0311

6

3578.0

63.11

33.4

29.50

0,0339

31

9970.0

58,29

43,7

27,48

0,0364

7

3761,0

62,77

33,6

27,60

0.0362

32

10419,0

58,26

43,5

23,95

0.0418

8

4011,0

63,21

- 31,7

23.58

0.044

33

3317,0

60,56

31,0

66,65

0,0150

9

3520,0

62,59

31,2

54,74

0,181

34

3658,0

60,63

31,7

56,22

0,0178

10

3786,0

62.75

31.2

52,16

0.019

35

5097,0

59,94

31.5

44.70

0,0224

11

4279,0

62.43

31,4

45,82

0 021

36

6388.0

60.22

33,6

36,05

0,0277

12

4665.0

62,63

32,3

42,08

0,0238

37

6424,0

61,18

33,2

32.21

0,0310

13

5101,0

63.40

33.4

39,16

0,0255

38

7264,0

60,44

34,1

28,11

0.0356

14

5440.0

62,60

32,8

37,12

0.0269

39

7536,0

58,66

34,6

27,23

0,0367

15

6209.0

62.44

34.2

31,81

0,0314

40

8323,0

60,48

35,2

23.75

0,0421

16

6914.0

63,38

34.0

24,89

0,0102

41

2802,0

58,55

28,5

38,44

0,0260

17

2550.0

59,58

32,0

44,69

0,0224

42

2696,0

59,90

26.9

41,74

0,0240

18

2783,0

60.45

33,3

43.22

0,0231

43

5720.0

60,33

27,6

30,77

0,0325

19

4072.0

60,07

34,3

37,53

0,02м

44

4614,0

59.75

29,4

24.63

0,0406

20

5800,0

ці,

34,9

27,90

Oji-^s

45

5292,0

5Х 98

21,25 30,4

0,047 1

21

6326.0

61.14

34,9

26,77

0.0374

46

6110.0

58,81

31,1

20,17

0,0496

22

7296,0

60.72

35,2

25,11

0.0398

47

6792.0

58,43

31,9

18,19

0,0550

23

60.74

35,2

22,81

0,0438

48

7224.0

58,38

32.5

15 58

0,0642

24

8395,0

62,14

34,9

19,36

0,0517

?

25886

2914,9

163.3,

1691,

1,517.

25

5071.0

57.64

39,9

54,67

0,0183

средня

5393.0

60,728

34,035

35,24

0,0316

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.