Рефераты. Тесты в технологии блочного обучения математике учащихся полной средней школы

г) ; Ответ: -0,25(3+8х)-2 -0,5sin2x; д) . Ответ: 0,5х2 -sinx -4x -4;

3. Вычислите интегралы: a) . Решение: воспользуемся формулой Ньютона-Лейбница . . Ответ: б) . Ответ: 1; в) . Ответ: 20;

4. Вычислите площадь фигуры, ограниченной линиями y=, y=0, x=-1, x=1. Фигура ограниченная данными линиями является криволинейной трапецией и её площадь равна: Ответ: 0,4.

после чего ученик идёт на тест самоконтроля, где предлагается решить подобные задания и самостоятельно сверить с верным решением.

Например:

Блок 1 Тест самоконтроля

1. Является ли функция F первообразной для функции f на указанном промежутке:

a) F(x)=3-sinx, f(x)=cosx, x(-; );

б) F(x)=5-, f(x)= - 4, x(-; );

в) F(x)=соsx-4, f(x)= - sinx, x(-; );

г) F(x)=3x+, f(x)= , x(0; )?

Ответ: нет, да, да, нет.

2. Правильно ли вычислены интегралы:

а) ; б) ; в) ; г) ; д) ?

Ответ: нет, да, нет, да, да.

3. Вычислите площадь фигуры, ограниченной линиями y=sinx, y=0, x=0, x=.

Ответ:2.

4. Верны ли равенства:

а) ; б) ; в) ;

г) д) ;

е) ?

Ответ: а) да; б) нет; в) нет; г) нет; д) да; е) нет.

Если ученик считает, что он готов пройти контроль, то он решает контрольный тест (см приложение блок 1 контрольный тест вариант 1) и в зависимости от результата переходит к Блоку 2, если ученик справился с заданием или же переходит к Блоку 1а, где ему предлагается ещё раз рассмотреть примеры решения ключевых задач подобных задачам из Блока 1. Рассмотрев данные задания, учащиеся, проходят контроль (см. приложение блок 1 контрольный тест вариант 2) и переходят к Блоку 2 или же если ученик не справляется с заданиями, то он идет на индивидуальную консультацию учителя (ИКУ), где учитель рассматривает ошибки и выявляет их причину. Если ученик считает, что он не готов пройти контроль, то он идёт на Блок 1а и дальше проходит контроль, аналогично сказанному выше, у учащегося есть два выхода: либо он переходит ко второму блоку, либо получает ИКУ, а затем переходит ко второму блоку.

Блок 2 - позволяет дать задания на конструктивном уровне. Учащимся предлагаются задачи с изменённой формулировкой или использующие дополнительную идею, а также их решение. Блок 2а задачи аналогичные задачам блока 2. Переход к третьему блоку осуществляется, так же как и переход от первого блока ко второму блоку.

Блок 1 и блок 2 должны пройти все учащиеся - это есть необходимый минимум, указанный в программе.

Блок 3, Блок 3а - позволяет дать задания на усложнённо-конструктивном уровне заданий. Он соответствует заданиям учебника после черты. Переход от блока 3 к блоку 4 осуществляется по тому же плану, что и предыдущие переходы.

Блок 4 - позволяет дать задания на творческом уровне, включает задачи которые носят исследовательский характер или с элементами исследования, нестандартные задания (см. приложение блок 4). На этом этапе учитель работает в роли консультанта.

Таким образом, обеспечивается уровневая дифференциация учащихся, они задерживаются на уровне, который отвечает их уровню знаний.

При построении занятий, таким образом, большую часть работы ученик выполняет самостоятельно, а именно: при работе с блоками 1, 1а, 2, 2а, 3, 3а, 4 и блоками самоконтроля. Помощь учителя оказывается ученику только при индивидуальной консультации и выполнение заданий блока 4. При контроле учитель чётко видит недостатки и ошибки учеников. Появляется возможность отслеживать и корректировать знания учеников на каждом уровне сложности. Использование тестирования при данном построении обеспечивает непрерывную диагностику знаний ученика.

Итак, перед контрольной работой имеет диагностические данные по каждому ученику и при необходимости проводиться урок коррекции знаний для отдельных учеников в дополнительное время.

Затем проводиться уровневая контрольная работа (см. приложение) следующим образом: учащимся предлагаются задания и объявляются критерии оценки на «3» необходимо выполнить 1,2 задания, на «4» - 3, 4 задания и на «5» - 3, 4, 5.

После проведения уровневой контрольной работы проводиться урок обобщения, на котором рассматривается положение и значение изученной темы в математике и других науках, применение её на практике и научных исследованиях.

2.3. Экспериментальное применение тестов в блочном обучении математике на примере темы «Интеграл»

Экспериментальная проверка гипотезы дипломного исследования осуществлялась в период с 17.03.2005 по 08.04.2005. На этапе обоснования гипотезы был проведен обучающий эксперимент педагогический эксперимент (17.03.2005 по 08.04.2005).

В эксперименте участвовало 21 учащихся первого курса математического факультета (11 - контрольная группа, 10 - экспериментальная).

Он был направлен на проверку гипотезы настоящего дипломного исследования, согласно которой, система тестового контроля знаний школьников при реализации в блочной технологии обучения математике может способствовать повышению эффективности математического образования.

Цель проведения обучающего эксперимента заключалась в проверке влияния предложенной методики на качество математических знаний и умений учащихся.

Выбирались группы учащихся, находящиеся приблизительно в равных условиях в начале эксперимента. К неварьируемым условиям при проведении эксперимента относились: объем учебного материала, установленный учебной программой по математике для средних школ, время, отводимое на его изучение, текст контрольной работы. Различие при обучении математике в контрольной и экспериментальной группах заключалось в том, что в экспериментальной группе (ЭГ) занятия велись по блочной технологии, т.е. с использованием приемов и методов, описанных во второй главе.

В контрольной группе (КГ) применялась традиционная методика обучения школьников математике. В результате наблюдений и анализа преподавания математики в этой группе были выявлены некоторые наиболее характерные подходы в обучении математике. Например, при обучении решению задач объяснялось решение задачи по шагам. Затем учащиеся решали вторую (третью) задачу с помощью преподавателя. Далее давалась следующая задача (или несколько задач), которую учащиеся решали самостоятельно. Успешное решение последней задачи рассматривалось как перенос усвоенных при решении предыдущих задач приемов мыслительной деятельности. Иногда на уроках математики обобщения задач и их решений преподносились учащимся в готовом виде в результате обработки учебного материала учителем.

С целью оценки результатов эксперимента посредством применения статистических методов учащимся были предложены: тест начальных знаний учащихся и уровневая контрольная работа (первый - в начале, вторая - в конце обучающего эксперимента). Задачи теста и контрольной работы были составлены в соответствии с требованиями программ по математике. При анализе выполнения теста и контрольной работы проводилось сравнение качества знаний учащихся контрольной и экспериментальной группы в начале эксперимента и в конце эксперимента. Представим результаты эксперимента.

Тест начальных знаний учащихся содержал 10 заданий различной сложности, как практических, так и теоретических. Максимальное количество баллов, которое мог заработать ученик 5 баллов.

Результаты диагностических работ в начале и в конце эксперимента представлены соответственно в таблицах 7 и 8, а также на диаграммах 1 и 2

Количество баллов

Число учащихся, получивших это количество баллов

КГ

ЭГ

5

2

1

4

4

4

3

4

4

2

1

1

Таблица 7

Таблица 8

Количество баллов

Число учащихся, получивших это количество баллов

КГ

ЭГ

5

1

4

4

2

5

3

6

1

2

2

0

Анализ результатов выполнения контрольных работ в начале эксперимента позволил нам выдвинуть нулевую гипотезу : «выборки, представленные в таблице 7, однородны (распределение учащихся по баллам существенно не различается)» при конкурирующей гипотезе : «выборки, представленные в таблице 7, неоднородны (распределение учащихся по баллам различается существенно)». Гипотеза проверена по критерию . Найдена числовая характеристика по формуле (1)

(1),

где и - число учащихся КГ и ЭГ соответственно, получивших определенный балл k=(1;4), , - число учащихся в КГ и ЭГ соответственно.

Таким образом,

По таблице критических точек распределения для уровня значимости и числа степеней свободы = 3 найдено критическое значение = .

Так как , то гипотеза принимается на уровне значимости 0,05. Поэтому можно утверждать, что на начало эксперимента качество знаний учащихся в контрольной и экспериментальной группах существенно не различается.

При анализе выполнения контрольных работ учащимися в конце эксперимента нами была ввыдвинута нулевая гипотеза: «выборки, представленные в таблице 8, однородны (распределение учащихся по баллам существенно не различается)» при конкурирующей гипотезе : «выборки, представленные в таблице 8, неоднородны (распределение учащихся по баллам различается существенно)».

Страницы: 1, 2, 3, 4, 5, 6, 7



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.