Известны четыре способа проверки правильности ответа задачи. Один из них основан на использовании жизненного и учебного опыта - метод «здравого смысла», второй - на проверке наименований физических величин (метод размерностей), третий на законах формальной логики, а четвертый предполагает проведение контрольного эксперимента.
В решебниках можно ожидать применения всех этих методов, однако в рассмотренных нами применяется только проверка размерностей.
Покажем на одном из примеров дидактические возможности логического метода проверки. Суть его состоит в следующем. Формулу, представляющую ответ задачи в общем виде, подвергают анализу - оценивают функциональное влияние каждой из входящих в неё физической величины на конечный ответ. Делают это путём сопоставления с выводами, следующими из жизненного опыта, частных законов, надёжно известных соотношений и иных представлений.
Задача 5. В длинном цилиндрическом сосуде под поршнем находится небольшое количество воды со снегом при нормальном давлении. Масса льда m, температура 0оС, давление насыщенного пара при 0оС равно ро, удельная теплота плавления льда , удельная теплота парообразования воды r. На сколько нужно изменить объём пространства перемещением поршня, чтобы весь лёд растаял? Какую работу при этом придётся совершить?
Ответы:
V = mRT/роr; A = mRT/r, где - молярная масса воды, T =273 К.
Анализ и решение задачи мы не приводим, рассмотрим лишь в сжатом виде процессы, протекающие в системе и приводящие к плавлению льда.
При уменьшении объёма пространства под поршнем динамическое равновесие между процессами испарения и конденсации нарушается. Избыток пара конденсируется, этот конденсат выделяет теплоту и плавит лёд. Для плавления всего льда нужно m теплоты. Такое количество теплоты отдаст некоторая масса пара m при конденсации: Q=m r. Такая масса пара в исходном состоянии (при 0о С) должна занимать объём V0: р0V0 = mRT/ . Отсюда имеем A=р0V = р0V0 = mRT/; Но, при Т = сonst = 0o , А = Q = mr = m, откуда m = m/r, и окончательно имеем А= mRT/r. V = mRT/rр0.
Процедура логической проверки ответа
1. Чем больше масса m льда, тем больше потребуется пара для его плавления, а т.к. давление его не меняется (давление насыщенного пара не зависит от объема), то потребуется большой исходный объём (вот для чего в условии указана длина сосуда). В ответе V~m, следовательно, по данному основанию ответ можно считать верным.
2. Чем больше удельная теплота плавления вещества, тем больше нужно теплоты для плавления заданной массы. Количество теплоты в данной задаче пропорционально объему пара. В ответе V~ , следовательно, по данному основанию ответ можно считать верным.
3. Чем больше давление насыщенных паров р0, тем больше их концентрация (р=nkT), а значит для некоторой массы пара при большем давлении и при прочих равных условиях можно обойтись меньшим конечным объёмом. В ответе V~1/р0, следовательно, по данному основанию ответ задачи верен.
4. Чем больше величина удельной теплоты парообразования (конденсации), тем меньшее количество пара потребуется для плавления данной массы льда. В ответе имеем V~1/r, что соответствует приведенному суждению. Следовательно, по данному основанию ответ верен.
В приведённых рассуждениях (п.п.1-4) рассмотрены все физические процессы, входящие в решение данной задачи и проверены функциональные связи между всеми величинами, входящими в формулу ответа для объема пара. Логических противоречий в ответе не выявлено, поэтому с позиций формальной логики его можно считать верным.
По аналогичной схеме можно проверить правильность второго ответа этой задачи.
5. Аналитическое или синтетическое решение. Что лучше?
Нам нравится повторять и исследовать то, что уже нам уже давно известно. Например, слушать и находить что-то новое в давно знакомых мелодиях, читать и перечитывать любимые книги, смотреть многократно одни и те же фильмы. В этот перечень входят отдельные элементы процесса обучения - ученики с удовольствием участвуют в повторении хорошо усвоенного материала. Часто при этом они находят новые - для них - грани вопроса или новую форму ответа, новую схему построения доказательства. Известно, что когда задача уже решена и записана в первом (формульном) приближении, полезно бегло просмотреть ход ее решения. В процессе такого просмотра часто удается обнаружить лишние действия, или наоборот, включить новые подходы и новые варианты решения. Все это позволяет предложить новый, лучший путь решения, отличающийся логикой, структурой и содержанием.
Задержка внимания учащихся на этом этапе может оказаться более продуктивной, чем решение последующих задач. Во-первых, потому, что по знакомому сюжету и знакомому решению ученика легче поднять на новый уровень обобщения теоретических знаний. И, во-вторых, в процессе такого беглого обзора условия задачи и ее решения открываются широкие возможности для импровизации. Очень полезен в этом случае такой прием, как построение «траекторий решения», как сокращенного представления плана решения задачи. Для этого в письменно оформленном решении выделяют главные моменты (поворотные точки) - законы и формулы, присваивают им номера и проставляют в тексте решения. Затем, придерживаясь версии решения, соединяют эти точки цветными карандашными линиями и записывают номера действий отдельной строкой.
Очень вероятны случаи, когда решение можно представить в виде нескольких разных траекторий. Покажем эту операцию на следующем примере.
Задача 6. Тело массой m, летящее горизонтально и имеющее кинетическую энергию E, попадает в неподвижно висящий на нити длиной L брусок массой М и застревает в нем. Какова максимальная сила натяжения нити?
Не приводя текста и рисунка, укажем основные понятия, законы и соотношения (формулы), используемые при решении этой задачи: кинетическая энергия, закон сохранения импульса, центростремительное ускорение, второй закон Ньютона. Пронумеруем и запишем используемые формулы.
Анализируя решение можно составить следующие «траектории» решений:
а). 1 - 2 - 3 - 4 - 5; б). 2 - 1 - 3 - 4 - 5;
в). 4 - 5 - 1 - 2 - 3 - 5; г). 4 - 2 - 1 - 3 - 5;
г). 4 - 5 - 3 - 2 - 1 - 2 - 3 - 4 - 5
Последовательность действий г) отражает аналитический способ рассуждений (4-5-3-2-1) и последующий порядок алгебраических действий (1-2-3-4-5). Остальные «траектории» представляют собой различные варианты синтетического способа решения этой же задачи, когда последовательность операций не подчинена строгой логике и все решение представляет набор действий, (интуитивно или осознанно - бывает всякое) укладывающихся в русло логики решения.
Если задача решена синтетическим методом, т.е. решение представляет собой набор фрагментов, располагающихся в случайной, неупорядоченной последовательности, то в памяти не сформируется алгоритм решения задач аналогичного содержания и типа, не возникнут ассоциативные связи с ранее решёнными подобными задачами, а следовательно, и мысленные схемы-конструкции, облегчающие распознавание и поиск аналогов и прецедентов. Эти огрехи можно выправить глубокой и осознанной проверкой ответа.
В реальном учебном процессе учитель, использующий аналитический метод решения, открыто разрабатывает, обосновывает маршрут движения в «дремучем лесу», показывая не только и не столько арсенал физических знаний, сколько методику логически безупречного их использования в конкретной ситуации.
Процесс синтетического решения - это в значительной мере «жонглирование» формулами. Конечный продукт здесь возникает после длительного процесса поиска, и очень часто не как следствие напряжённого труда, а как озарение. По затраченному времени такой способ проигрывает как в случае решения отдельной задачи, так и в общем процессе формирования навыков решения задач.
6. «Метод» решения «есть такая формула»
Наиболее откровенно такой стиль обучения наблюдается в работе Р А.П.Рымкевич, Решение задач из учебного пособия А.П.Рымкевича «Сборник задач по физике», 11 класс, М., «Дрофа» , 2002.. В этом решебнике приведены решения всех задач учебного пособия этого же автора «Сборник задач по физике», рекомендованного для школ министерством образования РФ. Мы проанализировали структуру, содержание и общий стиль предлагаемых автором решений.
Подавляющее большинство решений задач выполнены в одном стиле. Кратко его можно охарактеризовать, как решение от «формулы к формуле». Приведём в качестве примера дословное описание решения задачи №840.
Задача 7. «В однородное магнитное поле с индукцией В=10 мТл перпендикулярно линиям индукции влетает электрон с кинетической энергией Wк=30кэВ. Каков радиус кривизны траектории движения электрона в поле?
Решение. Кинетическая энергия
W=mv2/2,
следовательно,
v= (2Wk/m)1/2
Подставляя это выражение в формулу для скорости из задачи 839, получаем:
R=mv/eB=(2Wkm)1/2/eB.
Вычисления: R= …(следует подстановка числовых данных в СИ и вычисления).
Ответ: R=5,8 см.»
Такой стиль решения задачи - характерная особенность всего этого решебника. Отсутствие выделенного анализа сюжета обедняет содержание задачи, не связывает её физическое содержание с другими разделами курса физики и не способствует закреплению внутрипредметных связей. По нашему мнению здесь было бы полезным показать: а) траектория движения электрона - окружность, поскольку во всех точках движения на неё действует постоянная по величине и перпендикулярная к вектору скорости сила Лоренца F=qvBsinб; б) сила Лоренца не ускоряет частицу, поэтому все величины в формуле W=mv2/2 постоянны; в) при энергии 30 кэВ электрон ещё не стал релятивистской частицей и его масса в формулах энергии и силы Лоренца действительно равна 9,1•10-31 кг. И т.д.
Отсутствие анализа условий нередко приводит к грубым физическим ошибкам. В задачах по электростатике (№№680 - 690) закон Кулона повсеместно применяется без учёта размеров заряженных тел. Указание автора «считать заряды точечными» дано в сноске перед этим разделом, но … с какого-то номера задачи следовало бы снять это условие, чтобы показать границы применимости этого закона.
Страницы: 1, 2, 3, 4, 5, 6