Рефераты. Применение решебников в учебной практике

Условия равновесия, соответствующие равенству нулю результирующей силы, действующей на каждое тело, зависят, очевидно, от наличия силы трения и ее направления.
Если трения нет, то, как следует из решения системы (4),

В условиях равновесия a1 x =0 и т2 = т2* = т1 sinб = 3 кг. Если т2 < т2* , то a1 x > 0--тело т1 движется вниз по наклонной плоскости; если m2> т2* , то a1 x < 0--тело т1 движется вверх по наклонной плоскости.
В условиях равновесия сила трения является силой трения покоя и ее направление противоположно направлению возможного движения тела т1.
В первом случае 2 < т2*) сила трения направлена вверх по наклонной плоскости и систему (4) с учетом того, что a1 x = a=0, можно переписать в виде

0= m1gsinб - T -fTP, 0 = T-m2g, (6)

откуда

m2= m1sinб - fTP/g. (7)

Во втором случае (m2> т2* т) сила трения направлена вниз по наклонной плоскости и уравнения (6) примут вид

0= m1sinб - T + fTP, 0 = T - m2g, (8)

откуда

m2= m1sinб + fTP/g.

В обоих случаях сила трения покоя fTP ? kN = km1gcosб. С учетом этого неравенства выражения (7) и (8) примут вид

Легко видеть, что первое неравенство имеет смысл только когда sinб>kcosб. Оба неравенства не противоречат друг другу, и равновесие имеет место при 2,6 кг ?m2 ?3,4 кг.

Предельным значениям массы т2 соответствует наибольшая сила трения покоя

(f тр.макс = kN). Если т2 =2,6 кг или m2=3,4 кг, то при малейшем толчке (в первом случае--вниз, во втором--вверх) начнется движение системы. В обоих случаях движение будет равномерным.

Задача решена аналитическим методом, её описание содержит дополнительный материал, который лишь на первый взгляд делает решение излишне громоздким. На самом деле это хорошая иллюстрация методологии физики, как науки, при рассмотрении любой физической ситуации. Пользуясь такими пояснениями можно существенно повысить точность и обоснованность ответа, углубить уровень усвоения теоретического материала и приобрести навыки решения задач повышенной сложности.

3. Запись условия задачи следует завершать после её анализа

Как видно из приведённых примеров, авторы пособий по решению задач по разному подходят к рассматриваемой проблеме. Так например, в предисловии цитированного выше решебника В.Б.Лабковского выделены пять составных частей (этапов) решения задач, перечень которых нам представляется не только не идеальным, но во многом ошибочным.

Первым этапом автор считает запись условия. Однако следует помнить, что с чтением условия начинается процесс понимания содержания задачи. А понимание невозможно без анализа физической сути, скрытой в литературном сюжете. С момента ознакомления, с самых первых слов текста задачи непроизвольно, мысленно в ней выделяются физические явления, физические параметры и величины. Уже на этом этапе память настраивается на поиск аналогов и алгоритмов. Пренебрегать этим свойством нашего мышления на этапе восприятия задачи нельзя. Нередко к концу чтения задачи её ответ уже известен. А это возможно только в том случае, если процесс решения шёл одновременно с ознакомлением с её условием. Поэтому запись условия задачи по существу отражает не исходный, а переработанный - адаптированный и трансформированный текст задачи. И чтобы не допустить ошибок «этапу записи условия» должен предшествовать детальный анализ сюжета с точки зрения физики, который завершается представлением абстрактной модели физического сюжета задачи. Отсутствие в решебниках специально выделенного этапа анализа физического сюжета задачи (как и в реальной практике на уроке) следует отнести к существенным методическим ошибкам. Вместо обучения в этом случае производится «натаскивание», в основу которого положен принцип: «знай все формулы и научись ими манипулировать».

Второй этап автором обозначен как «Составление и решение уравнений». Следует отметить, что и составлению уравнений или их систем должен предшествовать анализ физической ситуации, из которого должны вытекать как сами уравнения, так и обоснования их применимости в условиях данной задачи. К сожалению, в этом пособии анализ отсутствует, а если и имеется, то никак не выделяется в тексте. Тем самым ослаблена одна из важнейших функций обучения - ознакомление с методологией физики, как точной и доказательной науки. Именно анализ ситуации приводит к необходимости вводить какие-либо ограничения и условности, текст задачи перерабатывается, подводится под идеализированные понятия и законы. Учащимся должна быть ясна вся эта «кухня», они должны производить эти действия осознанно, тогда они могут усвоить общие, а не частные подходы к составлению планов решения задач.

4. Проверка ответа - это один из важнейших этапов решения задачи

Нельзя считать удачным третий этап, названный «Проверкой единиц физических величин». Основание для такого заключения - малый удельный вес этого действия в общем процессе решения задачи. По сути, это проверка конечной формулы методом размерности входящих в неё величин. Сам автор довольно редко использует этот приём.

Далее идёт этап «Получение числового результата», представляющий элементарные математические действия. Наше отношение к объёму и качеству математических действий, сопутствующих решению физических задач, мы показали выше.

И завершается решение задачи этапом «Запись ответа». Автор осознаёт важность этого этапа, в качественных и в ряде вычислительных задач он приводит довольно подробный анализ и комментарий полученного результата. Но в качестве иллюстрации значимости записи ответа приводит пример, досадная погрешность которого часто встречается в учительской практике. Поэтому считаем необходимым и целесообразным его рассмотрение.

Задача 4. (Л. с.7) «Пуля, начальная скорость которой 600м/с, движется к цели с отрицательным ускорением 500м/c2. Через сколько времени она поразит цель, отстоящую от неё на расстоянии 300 м?».

При её решении получено два ответа: +0,71 и +1,69 с. Какой из двух ответов следует выбрать, как единственный верный? Автор решебника предлагает проверить следующим способом - он определяет время, по истечении которого скорость пули станет равной нулю t=v0/a =1,2c. Откуда следует, что верным является ответ 0,71 с.

Ответ правильный, нет замечаний и к данному варианту проверки ответа. Но есть существенное замечание к глубине объяснения полученных результатов. Оно состоит в том, что учащимся не дано никакого объяснения по поводу второго ответа. Это можно понимать как неявное утверждение, что он неверен. У учащихся формируется ложное представление, что даже правильное математическое описание в виде уравнений или формул, в принципе может дать неверный ответ. Но уравнение живёт самостоятельной жизнью, в нём для пули нет препятствия в виде цели, с точки зрения уравнения она движется «вечно». Следовало бы разъяснить, что с момента остановки (1,2 с) пуля, движется с прежним по величине и направлению ускорением, но теперь уже к исходной точке выстрела. Через 1,69 с после выстрела она вновь оказывается на расстоянии 300 м от места выстрела и продолжает дальнейшее движение.

Детальный анализ полученных ответов развивает альтернативное мышление и закрепляет аналитические навыки, открывает особенности математики, как инструмента физики. Можно пожелать, чтобы такое требовательное отношение к ответу стало нормой.

При обучении путём решения учебных задач важен не столько сам ответ, сколько процесс его получения. Вместе с тем процедуру представления и оформления ответа можно наделить дополнительными, обучающими и развивающими функциями. Поэтому, по нашему мнению ответ, как и анализ условия, следует выделить в самостоятельный и обязательный этап процедуры решения задачи. Таким путем можно добиться существенного повышения уровня усвоения знаний. В качестве оснований для этого утверждения можно привести следующие соображения.

1. Когда задача уже решена, анализ хода ее решения предполагает беглый просмотр всех тех действий, в результате которых был получен ответ. Непременно придется вспомнить базис и задание задачи, пройти по пути поиска аналога, повторить процедуру перекодировки условия, и т.д. Как и всякое повторение, эта процедура способствует улучшению усвоения учебного материала. Неминуемая в связи с этим дополнительная трата времени невелика, потому что «по свежим следам» условие и решение задачи всплывают в памяти в компактном, хорошо обработанном виде.

2. Когда ответ задачи получен, и она становится совершенно понятной, тогда пересказ ее решения способен доставить удовольствие. Вполне объяснимо возникающее в этот момент стремление придать решению лаконичную и логически безупречную форму. А это требует проведения объемной и глубокой аналитической работы по отбору наиболее существенных компонентов базиса и рациональных действий в ее решении. Все остальные признаки и действия на этот момент отбрасываются как лишние, несущественные, ошибочные. Такие действия способствуют систематизации и обобщению знаний по теме, а также формируют навыки и привычку к аналитическому стилю мышления.

3. В ходе работы над ответом, путем выделения существенных признаков и применения более рациональных действий формируется укрупненный дидактический блок, синтезированная схема (конструкция) задачи. Можно предположить, что именно такие обобщенные блоки закладываются в информационный фонд памяти, что облегчает поиск прецедентов и алгоритмов и все иные действия по решению задач.

4. Все операции, сопутствующие подготовке ответа, производятся вначале под руководством педагога, а впоследствии выполняются учащимися самостоятельно и становятся (или - увы! - не становятся) составной частью (программой) их аналитического и альтернативного мышления при решении не только учебных, но и любых иных задач.

5. Если в ходе решения условие задачи подверглось перекодированию и конкретный сюжет был заменен абстрактной моделью, то проверка правильности ответа приобретает особую актуальность. В этом случае необходимо проделать обратную процедуру - от абстрактной модельной ситуации, путем решения которой был получен ответ, перейти к исходному сюжету. Если при этом в модельном варианте не выявлены существенные отступления и нарушения исходных условий, то решение выполнено правильно. Ниже мы покажем, что формулировка ответа в этом случае обрастает рядом дополнительных условных суждений и допущений.

Страницы: 1, 2, 3, 4, 5, 6



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.