· в начале определяются тригонометрические функции для острого угла прямоугольного треугольника;
· затем введенные понятия обобщаются для углов от до ;
· тригонометрические функции определяются для произвольных угловых величин и действительных чисел.
В курсе алгебры и начала анализа осуществляется заключительный этап изучения, который включает:
Закрепление представлений учащихся о радианной мере угла; отработка навыков перехода от градусной меры к радианной и наоборот;
Формирование представлений об углах с градусной мерой, большей ; формирование представлений об углах с положительной и отрицательной градусными мерами; перевод этих градусных мер в радианы (положительные и отрицательные действительные числа);
Описание тригонометрических функций на языке радианной меры угла;
Утверждение функциональной точки зрения на , , и (трактовка , , и как функций действительного аргумента, установление области определения, области значений, построение графика функции, установление промежутков монотонности, знакопостоянства и т.д.);
Повторение известных и ознакомление с новыми тригонометрическими тождествами, ключом которых является тождество ;
Применение тригонометрических тождеств в тождественных преобразованиях и при решении задач по стереометрии.
В курсе "Алгебра 9" учащиеся знакомятся с функциональной точкой зрения. Выражения и определимы при , т.к угла поворота можно найти соответствующее значение дробей и . Выражение имеет смысл при , кроме углов поворота , , …, т.к. имеет смысл дробь .
Каждому допустимому значению соответствует единственное значение , , и . Поэтому , , и являются функциями угла . Их называют тригонометрическими функциями.
Учащиеся знакомятся со следующими общефункциональными свойствами этих функций:
1. область значения и - , для и - множество всех действительных чисел
2. промежутки знакопостоянства: , то значит зависит от знака и т.д.
3. , и являются нечетными функциями, а является четной функцией
4. при изменении угла на целое число оборотов значение , , , не изменится (под обратным понимаем поворот на ).
Введение радианной меры угла основывается на том факте, что отношения длины окружности к её радиусу постоянно для данного центрального угла и не зависит от выбора концентрических окружностей. По этой причине меру центрального угла можно охарактеризовать действительным числом . Если положить равным 1, то радианная мера центрального угла равна 1, т.е. .
Тогда для каждого угла, заданного в градусах, достаточно вычислить соответствующую дугу единичной окружности. Длина такой дуги будет выражать меру данного угла в радианах.
Радианная мера угла позволяет любому действительному числу поставить в соответствие определенную градусную меру угла по формуле: , где .
Переход от радианной меры угла к действительному числу осуществляется на основании того, что . Учащимся следует показать изменение величин углов по координатным углам:
1 четверть: , ;
2 четверть: , ; и т.д.
Определение тригонометрической функции выглядит так:
Опр. Окружность радиуса 1 с центром в начале координат называют единичной
окружностью. Пусть точка единичной окружности получена при повороте точки на угол в радиан. Ордината точки - это синус угла . Числовая функция, заданная формулой , называется синусом числа, каждому числу ставится в соответствие число .
Устанавливаются области определения и значения функций, напоминаются свойства:
; .
Можно построить схему, позволяющую изобразить график тригонометрических функций:
Начертить единичную окружность, горизонтальный диаметр которой служит продолжением оси . Разделить её на равные части (например,16).
Для функции выбираем отрезок , для функции - и делим их на то же равное число частей.
По окружности находим соответствующее число значений этих функций.
Точки пересечения горизонтальных линий, отвечающих значениям функций и вертикальных линий, отвечающих значениям аргумента, представляют собой точки графика.
Тригонометрический материал изучается в школьном курсе в несколько этапов.
Функции тригонометрических функций для углов от до
(прямоугольный треугольник, планиметрия);
Тригонометрические функции для углов от до (тема: "Декартовы координаты на плоскости; геометрия");
Тригонометрические функции для любого действительного числа.
Параллельно изучению теоретического материала учащиеся знакомятся с тригонометрическими формулами, объём которых будет постепенно рассширяться. Умение "выделить" эти формулы в дальнейшем поможет в преобразовании тригонометрических выражений.
К обязательным результатам обучения за курс геометрии в 7-9 классах относиться умение решать типичные задачи на вычисление значений геометрических величин (длин, углов, площадей) с привлечением свойств фигур, аппарата алгебры и тригонометрии.
Например:
В прямоугольном треугольнике найдите катеты, если его гипотенуза равна 5 см, а один из углов равен .
В прямоугольном треугольнике катет равен 4 см, а прилежащий к нему угол равен . Найдите другой катет и гипотенузу.
В треугольнике ABC: AB=3см, BC=6 см, . Определите .
В треугольнике ABC известны стороны: AB=4 см; BC=5 см; AC=6 см.
Найдите угол B.
Существуют различные доказательства формулы косинуса суммы двух аргументов.
Одно из наиболее простых доказательств основано на применении системы координат и формулы расстояние между двумя точками. Воспроизвести доказательство по опорному конспекту:
;
.
, ч.т.д.
С другой стороны:
- теорема сложения.
и по доказанной формуле.
Для доказательства суммы и разности двух углов используются формула приведения, которые помогают преобразовать функции от аргументов вида:
, , , .
Проведём радиус , длина которого равна , на угол : и получили радиус , где и на угол и получим радиус , где .
, : , .
- прямоугольник. Повернём его на угол вокруг точки :
; ; , т.е.
; , т.е:
; , по
Аналогично:
Тогда:
и т.д.
К функциям от углов можно прийти и из геометрических соображений.
Формулы приведения для и выводится из определения этих функций и ранее полученных формул приведения для синуса и косинуса. После этого полученные результаты сводятся в одну таблицу, с помощью которой можно сформулировать мнемоническое правило. Желательно учащимся предложить алгоритм применения формул приведения. Поясним его на примере:
{определяем четность, в которой оканчивается угол - II четверть; определяем знак данной функции в этой четверти - " - ". Изменяется ли название функции - нет, поэтому:} = - cos .
Вернёмся к выводу формулы синуса суммы и разности двух углов.
,
а затем применяется уже известная формула.
Формулы двойного угла выводятся из формулы синуса и косинуса суммы и разности двух углов, положив .
Сумму и разность тригонометрических функций можно преобразовать в произведение, используя следующий пример:
={ , }=
=,
но:
Таким образом:
Замечание: при ознакомлении учащихся с формулами следует добиваться от них проговаривания словесных формулировок доказываемых формул.
Например: сумма синусов двух углов равна удвоенному произведению синуса полусуммы этих углов на косинус полуразности.
В курсе алгебры 9 класса изучается тема: "Элементы тригонометрии" (30 часов):
1) радианное измерение углов, sin, cos, tg произвольного угла, их нахождение с помощью калькулятора;
2) основные тригонометрические тождества:
Их применение для вычисления значений sin, cos, tg;
3) формулы приведения; sin, cos суммы и разности двух углов; sin и cos двойного угла;
4) тождественные преобразования тригонометрических выражений; основная цель - сформировать умения выполнять тождественные преобразования несложных тригонометрических выражений с использованием формул, указанных в программе:
Рассмотрим некоторые примеры преобразований тригонометрических выражений:
Задача №1.
Доказать тождество:
Преобразуем левую часть и получим, применив формулы приведения:
8cos4+sin8=2sin8cos4+2sin4cos4=2cos4(sin8+sin4)=4cos4sin6cos2, и т.д.
Задачи №2.
Упростить выражение
а)
Можно применить формулы понижения степени:
=
{воспользуемся преобразованием разности косинусов в произведение по формуле: } =
б)
Задача №3
Преобразовать в произведение:
а) cos5+sin8+cos9+cos12=(cos5+cos12)+(cos8+cos9)=
=2cos17/2cos7/2+2cos17/2cos/2=2cos17/2(cos7/2+cos/2)=
=4cos17/2cos2cos3/2=4cos3/2cos2cos17/2
б) 3+4cos4+cos8=3(1+cos4)+(cos4+cos8)=6cos22+
+2cos6cos2=2 cos2(3cos2+cos6)=2cos2((cos2+|cos6)+
+2cos2)=2cos2(2cos4cos2+2cos2)=4cos22(cos4+cos2)=
=4cos22cos22=8cos42
Задача №4
Найти sin4+cos4, если известно, что:
sin-cos=1/2
sin4+cos4=(sin2 +cos2)2-2sin2cos2=1-2sin2cos2=
=1-1/2sin22={sin4-cos=1/2(sin-cos)2=
=1-2sincos=1/4sin2=3/4}=
Задача №5
Вычислить:
sin=-cos(2arctg4/3)={обозначим arctg4/3 через y, тогда получим cos2y, который нужно преобразовать в тангенс половинного угла. Применим формулу и получим}=
Страницы: 1, 2