Рефераты. Изучение тригонометрического материала в школьном курсе математики

Изучение тригонометрического материала в школьном курсе математики

Министерство образования Республики Беларусь

Учреждение образования

"Гомельский государственный университет им. Ф. Скорины"

Математический факультет

Кафедра МПМ

Изучение тригонометрического материала в школьном курсе математики

Реферат

Исполнитель:

Студентка группы М-42 Головачева А.Ю.

Научный руководитель:

Канд. физ-мат. наук, доцент Лебедева М.Т.

Гомель 2007

Содержание

Введение

1. Методика введения понятий синуса, косинуса и тангенса на геометрическом материале. Основные тригонометрические тождества

2. Методика введения определений тригонометрических функций углов от 0° до 180°

3. Методика изучения тригонометрических функций в курсе алгебры

4. Тождественные преобразования тригонометрических выражений. Тригонометрические уравнения и неравенства и методика обучения решению

Заключение

Литература

Введение

Традиционная методическая схема изучения тригонометрических функций такова: 1) вначале определяются тригонометрические функции для острого угла прямоугольного треугольника; 2) затем введенные понятия обобщаются для углов от 00 до 1800; 3) тригонометрические функции определяются для произвольных угловых величин и действительных чисел.

Первые два этапа реализуются в курсе планиметрии. Геометрический характер определений тригонометрических функций объясняет тот факт, что они составляют единственный вид функций, который начинают изучать не в курсе алгебры, а в курсе геометрии. Для геометрии важен "общефункциональный взгляд" на тригонометрические функции, а их прикладная сторона (решение прямоугольных треугольников, применение некоторых тригонометрических тождеств, теорем cos и sin, решение произвольных треугольников). Поэтому в курсе планиметрии нет термина "тригонометрические функции".

1. Методика введения понятий синуса, косинуса и тангенса на геометрическом материале. Основные тригонометрические тождества

Знакомство с тригонометрическим материалом начинается в курсе геометрии при знакомстве с прямоугольным треугольником. Понятия , и острых углов треугольника вводится для углов от до , как отношение сторон этого треугольника. Предварительно учащиеся должны усвоить названия сторон прямоугольного треугольника: катеты (стороны прямого угла) и гипотенуза (сторона противолежащая прямому углу). Для этого необходимо предложить учащимся прямоугольные треугольники, разнообразные по расположению вершин прямого угла и предложить назвать стороны треугольника.

Назовите катеты в ABC, APN. Назовите гипотенузы в LKM и EFA. Будут ли гипотенузами следующие отрезки: AB, KL, AP, AN, EF, FA в указанных треугольниках и почему?

Следующие выражения "прилежащий" и "противолежащий" отрабатываются на следующем этапе. Для этого необходимо по указанным треугольникам предложить учащимся назвать прилежащие и противолежащие острым углам катеты. Назвать отрезки: KL, PN, EA и попросить учащихся назвать те углы, против которых лежат эти катеты или, которым они прилегают.

Первым вводится понятие угла и доказывается теорема: " Косинус угла зависит от градусной меры угла и не зависит от расположения и размеров треугольника". Это определение уже " работает" при доказательстве теоремы Пифагора.

С остальными понятиями учащиеся знакомятся в пункте " Соотношения между сторонами и углами в прямоугольном треугольнике". sin , tg

Формируется свойство: синус и тангенс угла так же, как и косинус, зависят от величины угла.

Для синуса это доказывается так:

=,

так как косинус зависит только от величины угла, то и синус зависит только от величины угла.

Из определений , и получаем следующие правила:

v Катет, противолежащий углу , равен произведению гипотенузы на синус ;

v Катет, прилежащий к углу , равен произведению гипотенузы на косинус ;

v Катет, противолежащий углу , равен произведению второго катета на тангенс .

По этим правилам можно находить неизвестные элементы в прямоугольном треугольнике.

Перечисленные правила могут быть выведены учащимися самостоятельно. Для этого предлагаются вопросы: В прямоугольном треугольнике MNP, LN=, LM=, гипотенуза MP=m. Найти длины катетов этого треугольника. ( Задача решается по определению).

Раньше по программе тригонометрические функции и соотношения между углами и сторонами в прямоугольном треугольнике изучались в курсе 8 класса.

После введения понятий , и рассматривались решения основных задач, связанных с отысканием длин сторон и величин углов в прямоугольном треугольнике.

Задача №1. Дано: a, b. Требуется найти A, B, c.

Задача №2. Дано: a, c. Требуется найти A, B, b.

Задача №3. Дано: a, A. Требуется найти A, b, c.

Задача №4. Дано: a, B. Требуется найти A, b, c.

Задача №5. Дано: a, A. Требуется найти B, a, b.

По действующей программе эти задачи в курсе 8 класса (бывший 7 класс) заменены такой: В прямоугольном треугольнике даны: гипотенуза c и острый угол . Найдите катеты, их проекции на гипотенузу и высоту, опущенную на гипотенузу.

Вводятся основные тригонометрические тождества:

, , , .

В частности, основное тригонометрическое тождество выводится из формулировки теоремы Пифагора:

, .

Учащиеся знакомятся с некоторыми свойствами функций острого угла: 1) при возрастании острого угла и возрастают, а - убывает; 2) для любого острого угла : , ; которые формулируются как теоремы. Их доказательство связывается с соотношениями острых углов в прямоугольном треугольнике:

, , тогда , .

,

тогда из равенства правых частей получаем:

.

, тогда .

Вывод свойства возрастания и убывания выглядит так:

Пусть и - острые углы, и , и она пересекает стороны углов и в точках и соответственно.

Так как , то точка лежит между точками и , тогда . А значит, по свойству наклонных, (через сравнение их проекций). Так как , , то косинус убывает. А так как , то синус возрастает.

2. Методика введения определений тригонометрических функций углов от до

Расширение области определения тригонометрических функций от до происходит в теме: "Декартовы координаты на плоскости".

Рассмотрим окружность с центром в начале координат произвольного радиуса R. Откладываем в полуплоскость угол . Пусть точка имеет координаты и . , , то из треугольника : , .

Определяются значения и этими формулами для любого угла ? (для 0-исключается).

Можно найти значения этих функций для углов 900, 00, 1800. Доказывается, что для любого угла ? , 00<?<1800, .

повернем подвижный радиус на угол 1800-?=

по гипотенузе и острому углу: => OB1=OB; A1B1=AB => x = -x1,y = y1=>

Итак, в школьном курсе геометрии понятие тригонометрической функции вводится геометрическими средствами ввиду их большей доступности.

Традиционная методическая схема изучения тригонометрических функций такова: 1) вначале определяются тригонометрические функции для острого угла прямоугольного треугольника; 2) затем введенные понятия обобщаются для углов от 00 до 1800; 3) тригонометрические функции определяются для произвольных угловых величин и действительных чисел.

Первые два этапа реализуются в курсе планиметрии. Геометрический характер определений тригонометрических функций объясняет тот факт, что они составляют единственный вид функций, который начинают изучать не в курсе алгебры, а в курсе геометрии. Для геометрии важен "общефункциональный взгляд" на тригонометрические функции, а их прикладная сторона (решение прямоугольных треугольников, применение некоторых тригонометрических тождеств, теорем cos и sin, решение произвольных треугольников). Поэтому в курсе планиметрии нет термина "тригонометрические функции".

Конкретизировать, например, понятие cos острого угла прямоугольного треугольника, можно по следующей методической схеме:

1) построить на миллиметровой бумаге прямоугольный треугольник ABC;

2) обозначить величину острого угла А буквой ?;

3) измерить (по клеткам) прилежащий катет АС и гипотенузу АВ;

4) вычислить отношение

5) записать значение cos ? (делается следующая запись cos ? ? в которой для ? не указывается его конкретное значение);

6) измерить транспортиром угол ?, найти его величину и записать значение косинуса этого угла данного прямоугольного треугольника.

Определенные трудности в изучение элементов тригонометрии (по Пифагору) порождает теорема: "Косинус угла ? зависит только от градусной меры угла". Необходимость изучения данной теоремы можно разъяснить учащемуся так: Пусть требуется на основании определения найти cos 370. Предположим, что это задание выполняют отдельно друг от друга несколько человек. Чтобы найти cos 370, они построят прямоугольный треугольник (каждый свой) с углом в 370, измерят прилежащий катет и гипотенузу, найдут отношение прилежащего катета к гипотенузе. Полученное число и будет являться cos 370. Есть ли гарантия, что каждый ученик получит один и тот же ответ? Этот вопрос возникает по той причине, что каждый строит свой треугольник, получает свои значения длин прилежащего катета и гипотенузы. Так, может быть, и искомое отношение у каждого ученика будет какое-то свое? Понятно, что если бы значение cos 370 при переходе от одного прямоугольного треугольника к другому изменялось, то ценность такого понятия в математике была бы не велика. Изучаемая терема является ответом на поставленные вопросы. Она утверждает, что косинус острого угла зависит не от выбора прямоугольного треугольника, а только от меры угла.

При решении прямоугольных треугольников необходимо обратить внимание учащегося на тот факт, что с каждой из формул для cos, sin и tg ? связывается еще две формулы:

Определение cos, sin, tg углов от 00 до 1800 являются генетическими, т.к. в них указываются построения и вычисления, позволяющие найти значение тригонометрической функции.

В пособие говорится следующее (стр. 132, 1, 2 абзац), обратите внимание учащихся на следующее обстоятельство. Ранее для острых углов были установлены некоторые тригонометрические тождества. "Справедливы ли эти тождества для углов от 00 до 1800. Справедливы ли прежние доказательства этих тождеств или необходимо привести новые?"

Сравним доказательства основного тригонометрического тождества: для острых углов и для углов от 00 до 1800:

00<?<900

00???1800

1

1

2

2

3

3

В курсе "Алгебра 9" обобщается определение cos, tg и sin ? на случай произвольного угла ? и вводится понятие ctg ?. Возможность такого обобщения - во введении понятия угла поворота, положительного и отрицательного угла, понятия полного оборота. Доказывается, что тригонометрические функции, их значение, не зависит от длины радиуса.

Здесь же приведены с доказательствами основные тригонометрические формулы, формулы сложения и их следствия.

3. Методика изучения тригонометрических функций в курсе алгебры

Традиционная методическая схема изучения тригонометрических функций:

Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.