Особенность стохастических умозаключений проявляются, прежде всего, в ходе интерпретаций результатов решения математической задачи, возникшей на базе статистической информации. По этой причине во многих случаях одну и ту же статистическую информацию разные люди могут трактовать по-разному. Примером может служить следующая ситуация:
Владелец одного частного предприятия уволил большую часть рабочих, а оставшимся снизил зарплату на 20% (табл. №1). После этого он заявил, что средний заработок рабочих на его предприятии повысился. Так ли это?
Таблица №1.
Заработок до увольнения
Заработок после увольнения
1000 р.
400 р.
800 р.
320 р.
Число рабочих
200
800
120
Если вычислить средние характеристики: моду, медиану и среднее арифметическое, то получим, что их значения после увольнения части рабочих будут больше, чем до увольнения. Но в данном случае, если внимательно посмотреть на таблицу, то можно заметить, что жизнь рабочих не улучшилась, а только ухудшилась, не говоря уже о тех, кто вообще потерял работу. Видимость повышения зарплаты создается из-за увольнения значительной части низкооплачиваемых рабочих. Здесь итоги решения математической задачи противоречат здравому смыслу. Математическая модель, как видно из данного примера, не всегда адекватна практической ситуации.
Выступая в качестве дирижера и помощника учащихся, учитель призван прививать им критическое отношение к статистическим выводам и обобщениям, умение правильно истолковать статистическую информацию, самостоятельно разоблачать различного рода фальсификации, кажущиеся на первый взгляд «правдоподобной» информацией.
Учитель должен глубоко понимать причины появления опасности принятия неправильных решений в ходе анализа явлений, происходящих под воздействием случая. Обманчивое впечатление, например, может возникать из-за неполноты статистической информации. Например, рассматривая сведения о числе женщин, занятых в промышленности и в системе образования, можно прийти к выводу, что женский труд преобладает в промышленности:
Где работают
В промышленности
В образовании
Число женщин
129 483
41 769
Однако мнение меняется, после того, как дополнительно становится известным, что в образовании работает 57 218 человек, а в промышленности - 264 251 человек. В результате получается, что число женщин составляет примерно 73% от всех работников образования, и только примерно 49% от всех работников занятых в промышленности.
К неправильным или противоречивым выводам может привести также неадекватный выбор критериев, по которым интерпретируются статистические данные. Здесь примером может служить следующая ситуация: каждая из двух фирм по изготовлению обуви послала в некоторую африканскую страну своего агента для выяснения возможности продажи своей продукции. Агент первой фирмы телеграфировал: «прекрасный рынок для обуви - здесь 90% жителей не носят ботинок». Агент второй фирмы сообщил: «Для обуви здесь нет рынка - 90% жителей не носят ботинок».
Специфика стохастической линии требует от учителя умений так организовать математическую деятельность школьников, чтобы изучение понятий и методов происходило в форме открытия новых инструментов познания окружающего мира. При обучении стохастике создается благоприятная почва для эвристической деятельности учащихся. У педагогов появляется возможность использования новых, непривычных для уроков математики, подходов к обучению. Учитель, определяя уровень усвоения учениками тех или иных стохастических умений, может столкнуться со следующей трудностью: при решении задач учащемуся чаще приходится опираться на свой здравый смысл, а не действовать строго по алгоритму, поэтому ответы разных учащихся на один и тот же вопрос могут звучать по-разному. В данном случае задачей учителя является оценка «права на ошибку» учащегося, поскольку сама такая оценка носит вероятностный характер.
Следует учитывать, что дети с опережающими темпами общего развития раньше начинают самостоятельно осуществлять деятельность, связанную с проведением статистических экспериментов и исследований, организуют других ребят, раньше переходят от использования эмпирических характеристик к построению вероятностных моделей. Поэтому особое значение имеет разграничение уровня умений и навыков самостоятельного получения выводов об изучаемых явлениях.
Приступая к обучению школьников стохастике, учитель должен себе ясно представлять, чем обусловлена необходимость введения в школу новой содержательно-методической линии. Осознание учителем целей обучения стохастике в школе, видение их соотношений с общими целями обучения математике и места стохастики в ряду других тем, знание итоговых требований к стохастической подготовке учащихся составляют важнейший общезначимый компонент методической готовности учителя математики к реализации новой линии.
§3 Некоторые выводы содержательно-методического характера по реализации стохастической линии в основной школе.
На основе всего рассмотренного и изученного материал по предложенной теме, можно сделать некоторые выводы и дать рекомендации по реализации стохастической линии в школе.
Анализ учебной литературы по исследуемой теме показал, что разные авторы подошли к реализации нового содержания в учебниках по-разному. Я считаю, что более преемственен для школы учебник под редакцией Дорофеева [18,19,20,21,22], который, на мой взгляд, имеет ряд преимуществ.
Во-первых, материал включен непосредственно в сам учебник, и работа по всем направлениям ведется параллельно, каждая линия проходит через все классы. Материал, предложенный в учебном пособии, рассчитан на 5-9 классы. Это в свою очередь позволяет уже в 5-6 классах начать формировать вероятностные представления, что, по мнению психологов, считается удачным.
С самого начала ведется работа по анализу данных (сбор, представление и анализ информации). Работа с таблицами и диаграммами.
Авторами учебника в качестве упражнений предлагается провести ряд экспериментов, что необычно для уроков математики, и призвано вызвать у учащихся неподдельный интерес. И затем, опираясь на результаты проведенных опытов, учитель вводит понятие частоты, после чего вводит частотное определение вероятности.
В большинстве учебников комбинаторные формулы рассматривается лишь как средство для подсчета вероятности, это сказывается на содержании этого материала в учебниках, и места его изучения. Но комбинаторика ставит и другие цели: в первую очередь - это развитие мышления, и использование комбинаторных знаний для решения задач прикладного характера.
Реализация любой темы в школьном курсе сталкивается с рядом проблем. Одной из них является проблема содержания материала, что именно и в каких количествах изучать в школе. Так как школьный курс строго ограничен временными рамками, то приходится выбирать необходимый минимум, но чтоб он был достаточным, для достижения поставленных целей обучения по данной линии и математике вообще.
Опираясь на государственные стандарты образования, анализ учебной и методической литературы можно выделить следующие моменты о содержании и последовательности изложения материала по данной линии.
Во-первых, необходимо изучать этот материал на протяжении всего курса средней школы. Весь курс условно можно разбить на несколько этапов (5-6 классы (подготовительный); 7-8 классы; 9 класс), причем на каждом этапе формируются одни и те же виды деятельности, но на разных уровнях и различными средствами. На каждом этапе материал усложняется, дополняется, отрабатываются ранее усвоенные и формируются новые умения и навыки.
Важным элементом стохастической линии является работа с данными: сбор данных, обработка, представление, анализ, практические выводы. Всем этим занимается наука, которая называется статистика.
На первом (подготовительном) этапе обучения - это работа с таблицами и диаграммами. Необходимо обучать учащихся не только работе с уже готовыми данными, но и самостоятельно собирать информацию и представлять ее в различных формах. Ежедневно нам необходима разнообразная информация, которая может быть представлена в различной форме, и одним из самых распространенных способов представления информации являются таблицы. Учащиеся в своей жизни часто сталкиваются с различного рода таблицами - это расписание уроков, страница классного журнала, программа телепередач, турнирные таблицы и т.п.
Учащиеся должны уметь анализировать данные, используя таблицы и диаграммы. Это позволяет в дальнейшем при изучении статистики не останавливаться на обучении учащихся работе с табличными данными и позволяет сконцентрировать внимание именно на обучении учащихся делать статистические и практические выводы.
Можно показать практическую значимость таблиц, построенных по результатам опроса общественного мнения (в классной жизни такие таблицы могут быть использованы, например, для организации досуга).
Для представления различных данных также очень удобно использовать диаграммы. Диаграмма является очень наглядным способом представления информации и различных данных и позволяет легче анализировать полученные результаты.
Одним из направлений стохастической линии является теория вероятностей, где одной из важных задач на первом этапе является формирование понятия - вероятность случайного события.
Сначала необходимо познакомить учащихся с понятием случайное событие, сформировать у них представление о том, какое событие называется достоверным, какое невозможным и какие события называются равновероятными. Все эти понятия нужно вводить, опираясь на понятные примеры, и просить детей самих приводить такие примеры. Учитель должен все время фиксировать внимание учащихся на случайных явлениях в быту, в природе и технике.
Необходимо развить у учащихся понимание степени случайности различных явлений и событий. При этом учитель сам должен качественно оценивать ответ, так как часто ответ является субъективным.
Перед введением самого понятия - вероятность случайного события полезно провести эксперименты со случайными исходами. После проведения экспериментов можно познакомить учащихся с результатами экспериментов, которые неоднократно проводились на протяжении нескольких столетий и сравнить c результатами, полученными учащимися. Сравнивая их, учащиеся с удивлением замечают, что результаты очень похожи. Проведение экспериментов должно возбудить у учащихся неподдельный интерес. Эксперимент является эмпирическим методом обучения, используемый в частности, в экспериментальных естественных науках, а математика не является экспериментальной. Поэтому этот метод в математике применяется редко, так как опыт не является достаточным основанием истинности того или иного предложения. Но опыт, эксперимент дает учащимся возможность извлечь из них очевидные закономерности, сделать какие то открытия, а теория вероятностей опирается именно на результаты многочисленных экспериментов.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12