80
Федеральное агентство по образованию
Государственное образовательное учреждение высшего профессионального образования Вятский государственный гуманитарный университет
Математический факультет
Кафедра алгебры и геометрии
Выпускная квалификационная работа
Элементы статистики, комбинаторики и теории вероятностей в основной школе.
Выполнила
студентка V курса
математического факультета
Лысова Инга Геннадьевна
Научный руководитель:
кандидат педагогических наук, доцент кафедры алгебры и геометрии
Шихова А.П.
Рецензент:
Допущена к защите в государственной аттестационной комиссии
«___» __________2005 г. Зав. кафедрой Е.М.Вечтомов
«___»___________2005 г. Декан факультета В.И. Варанкина
Киров
2005Содержание
Введение 3
Глава 1.
§1 Анализ учебно-методической литературы по теме исследования
1. Инструктивные письма 6
2. Анализ статей из журналов «Математика в школе» 9
3. Анализ вероятностно-статистической линии
в учебной литературе 16
§2 О подготовке учителей к обучению школьников стохастике 27
§3 Некоторые выводы содержательно-методического характера по реализации стохастической линии в основной школе 32
Глава 2. Методика изучения стохастики в основной школе
§1. Методика реализации стохастической линии в 5 классе 38
§2. Методика реализации стохастической линии в 6 классе 49
§3. Методика реализации стохастической линии в 7 классе 59
§4. Методика реализации стохастической линии в 8 классе 67
§5. Методика реализации стохастической линии в 9 классе 72
Заключение 76
Библиография 77
Введение.
В настоящее время никто не подвергает сомнению необходимость включения стохастической линии в школьный курс математики. О необходимости изучения в школе элементов теории вероятностей и статистики речь идет очень давно. Ведь именно изучение и осмысление теории вероятностей и статистических проблем особенно нужно в нашем перенасыщенном информацией мире. Но внедрение стохастической линии в школьный курс столкнулось с некоторыми трудностями, в первую очередь, это методическая неподготовленность учителей и отсутствие единой методики и школьных учебников.
Современная концепция школьного математического образования ориентирована, прежде всего, на учет индивидуальности ребенка, его интересов и склонностей. Этим определяются критерии отбора содержания, разработка и внедрение новых, интерактивных методик преподавания, изменения в требованиях к математической подготовке ученика. И с этой точки зрения, когда речь идет не только об обучении математике, но и формировании личности с помощью математики, необходимость развития у всех школьников вероятностной интуиции и статистического мышления становится насущной задачей. Причем речь сегодня идет об изучении вероятностно-статистического материала в обязательном основном школьном курсе «математике для всех» в рамках самостоятельной содержательно-методической линии на протяжении всех лет обучения.
Исследования психологов (Ж.Пиаже, Е.Фишбейн) показывают, что человек изначально плохо приспособлен к вероятностной оценке, к осознанию и верной интерпретации вероятностно-статистической информации. Работы психологов утверждают, что наиболее благоприятен для формирования вероятностных представлений возраст 10-13 лет (это 5-7 классы). Экспериментальная работа в 5 и 6 классах по пропедевтике вероятностных представлений, проведению экспериментов со случайными исходами и обсуждению на качественном уровне их результатов показало, что этот не закрепленный формальными «обязательными результатами» период дает хорошее развитие вероятностной интуиции и статистических представлений детей. [2]
Согласно данным ученых-физиологов и психологов в среднем звене школы заметно падение интереса к процессу обучения в целом и к математике в частности. На уроке математики в основной школе, в пятых-девятых классах, проводимых по привычной схеме и на традиционном материале, у ученика зачастую создается ощущение непроницаемой стены между изучаемыми объектами и окружающим миром. Именно вероятностно-статистическая линия, или, как ее стали называть в последнее время, - стохастическая линия, изучение которой невозможно без опоры на процессы, наблюдаемые в окружающем мире, на реальный жизненный опыт ребенка, способна содействовать возвращению интереса к самому предмету «математика», пропаганде его значимости и универсальности. [2]
Знакомство школьников с очень своеобразной областью математики, где между черным и белым существует целый спектр цветов и оттенков, возможностей и вариантов, а между однозначными «да» и «нет» существует еще и «быть может» (причем это «может быть» поддается строгой количественной оценке), способствует устранению укоренившегося ощущения, что происходящее на уроке математики никак не связано с окружающим миром, с повседневной жизнью. Учащиеся видят непосредственную связь математики с окружающей действительностью, реальной жизнью.
Цель дипломной работы: на основе исследований, сделать выводы о возможности введения стохастической линии в основную школу, и дать полезные методические рекомендации для ее реализации.
Исходя из этого можно выделить следующие задачи, реализация которых позволяет достичь поставленную цель.
· Необходимо определить содержание материала по каждому из направлений: комбинаторика, статистика, теория вероятностей.
· Проанализировать связи между этими направлениями и определить последовательность или параллельность их изучения.
· По каждому классу определить содержание и разработать методику обучения учащихся каждому из названных разделов стохастики.
Для реализации данных задач используются следующие средства.
· Изучение школьных учебников, статей, психолого-педагогической и методической литературы по данной теме.
· Изучение стандартов образования по данной теме.
· Анализ школьных учебников, выявление преимущества тех или иных учебных пособий.
· Изучение имеющегося опыта преподавания в школе данной темы.
§1 Анализ учебно-методической литературы по теме исследования.
1. Инструктивные письма.
Один из важнейших аспектов модернизации содержания математического образования состоит во включении в школьные программы элементов статистики и теории вероятностей. Это обусловлено ролью, которую играют вероятностно-статистические знания в общеобразовательной подготовке современного человека. Без минимальной вероятностно-статистической грамотности трудно адекватно воспринимать социальную, политическую, экономическую информацию и принимать на ее основе обоснованные решения.
Изучение элементов комбинаторики, статистики и теории вероятностей в основной школе станет обязательным после утверждения федерального компонента государственного стандарта общего образования. Но в связи с тем, что внедрение в практику работы этого нового материала требует нескольких лет и нуждается в накоплении методического опыта, Министерство образования РФ рекомендовало образовательным учреждениям начать преподавать курс «Элементы комбинаторики, статистики и теории вероятностей» в основной школе с 2003/2004 учебного года.
При этом предлагается ориентироваться на следующее содержание:
· Решение комбинаторных задач: перебор вариантов, подсчет числа вариантов с помощью правила умножения.
· Представление данных в виде таблиц, диаграмм, графиков. Диаграммы Эйлера. Средние результаты измерений.
· Понятие и примеры случайных событий. Частота события, вероятность. Равновозможные события и подсчет их вероятности. Представление о геометрической вероятности.
Перечисленный круг вопросов представляет собой некоторый минимум, доступный учащимся основной школы и достаточный для формирования у них первоначальных вероятностно-статистических представлений. [25]
Государственным стандартом образования предусмотрен обязательный минимум, и изложены основные требования к уровню подготовки выпускников.
Для основного общего образования, по теме - Элементы логики, комбинаторика, статистика и теория вероятностей на данный момент установлен следующий обязательный минимум:
Множества и комбинаторика. Множества, элементы множества. Подмножества. Объединение и пресечение множеств. Диаграммы Эйлера. Примеры решения комбинаторных задач: перебор вариантов, правило умножения.
Статистические данные. Представление данных в виде таблиц, диаграмм, графиков. Средние результаты измерений. Понятие о статистическом выводе на основе выборки. Понятие и примеры случайных событий.
Вероятность. Частота событий, вероятность. Равновозможные события и подсчет их вероятности. Представление о геометрической вероятности.
Требования к уровню подготовки выпускника:
В результате изучения математики ученик должен знать и понимать вероятностный характер многих закономерностей окружающего мира, примеры статистических закономерностей и выводов.
В результате изучения элементов логики, комбинаторики, статистики и теории вероятностей учащийся должен уметь:
· Извлекать информацию представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики.
· Решать комбинаторные задачи путем систематического перебора возможных вариантов, а также с использованием правила умножения.
· Вычислять среднее значения результатов измерений
· Находить частоту события, используя собственные наблюдения и готовые статистические данные
· Находить вероятность случайных событий в простейших ситуациях.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12