Рефераты. Менеджмент продуктивности p> Проектирование и перепроектирование трудоемких работ основано на изучении характеристики выполняемых работ и их взаимосвязи с другими работами или операциями, и затем проводится диагностический обзор выполняемых работ с целью совершенствования организации труда и возможности замены трудоемких операций машинными процессами. При этом рассчитывается экономическая эффективность и оценивается целесообразность осуществления подобных замещений. Если это приемлемо, то разрабатывается план мероприятий и сроки, в которые технические службы должны уложиться. При этом все трудоемкие операции, которые замещаются, рассматриваются под углом зрения теории обогащения труда, которая характеризуется шестью основными факторами:
- ответственность;
- возможность достижение;
- система контроля над ресурсами;
- возможность получения обратной связи;
- степень получения работником возможности профессионального роста;
- контроль за условиями труда.

На базе исследований проектирования и перепроектирования трудоемких работ, сложившаяся в настоящее время теория характеристик работ, суть которой в том, что вероятность позитивного психологического состояния работников может быть максимальной при наличии пяти аспектов работы:
- разнообразие;
- законченность;
- значимость;
- самостоятельность;
- обратная связь с распределителем работ.

Партисипативность – вовлечение работников. Эта группа методов основана на исследованиях Локка, который установил, что решение любой проблемы, в которой задействован человек, должно состоять из трех основных составляющих:
1) Анализ проблем:
- анализ вопросов;
- отбор проблем;
- определение проблем;
- анализ установленных проблем.
2) Анализ решений:
- выявление альтернатив;
- анализ альтернатив;
- проектирование альтернатив;
- принятие решения.
3) Анализ внедрения:
- непосредственный анализ внедрения;
- внедрение;
- оценка полученных результатов.

Именно такая система решения проблем позволяет максимально достичь требуемых результатов при высокой активности работников, привлечения их к проблемам производства.

Специалисты последователи Локка определили, что вовлечение работников в вопросы повышения производительности чаще всего предусматривает создание и деятельность малых групп по решению одной или нескольких из ранее перечисленных 11 видов деятельности.

Примером организации и проведения партисипативности может служить фирма Мураши, которая ежегодно исходя из стратегии фирмы и задач, связанных с завоеванием рынка, разрабатывает программы обучения своих сотрудников для достижения требуемого уровня производительности. Так, для генеральных управляющих филиалов фирмы проводятся курсы высшего руководства, где осуществляются семинары по руководству и по мотивации.

Семинары для руководителей отделов. На них рассматриваются вопросы планирования деятельности отдельных подразделений, увязка их планов с общими планами фирмы.

Семинары для инженеров и бригадиров. 2 семинара: первый по руководству малыми группами, второй – обучение проверке качества продукции или выполняемых работ

Такая система постоянной подготовки привела к тому, что уровень производительности труда в этой фирме за 4 года увеличился почти в 5,5 раза. Количество запасов товарно-материальных ценностей сократилось на

27%, а время выполнения отдельных операций сократилось на 26%.

Существует модели поведения руководителя. В ряде фирм и компаний разработаны с помощью специалистов модели поведения руководителя. При чем они составляются в двух вариантах. В одном – это модель индивидуального поведения руководителя, в другом – модель решения крупных проблем. Оба варианта модели основаны на семи основных правилах:
1) правило информации. Его суть в том, что для принятия решений необходимо пользоваться всесторонней информацией и остерегаться односторонности принятия управленческих решений;
2) правило совместимости целей. Чтоб работник проникся вашей целью и исполнял ее с желанием;
3) правило неструктурной (неструктуризированной) проблемы. Когда возникает неожиданный вопрос в ходе решения запланированных заданий. Нужно получить всестороннюю информацию, донести до подчиненных и расположить их, чтоб он решали ее с охотой;
4) правило одобрения. Когда к вам приходит подчиненный с предложением, которое вы не одобряете, необходимо всесторонне обосновать ваш отказ. А если его предложение вам подходит, то одобрить его;
5) правило разногласия. Пересекается с предыдущим правилом. Если у вас есть разногласия, их необходимо тщательно обдумать, структуризировать и изложить предложившему;
6) правило справедливости. Это означает, что для дела необходимо отбросить все личные симпатии и антипатии, которые мешают объективному выбору;
7) правило приоритетной объективности (одобрения). Связано с предыдущим.

Выбирать такое решение, которое приоритетно для целей фирмы.

На ряде фирм и компаний составляют сетевые графики, с помощью которых прослеживается и схематично отражается весь процесс управления продуктивностью. Если на каком-то их этапов происходит отклонение, сдвигаются сроки или вводится что-то не предвиденное, то это также отражается на сетевом графике, при чем все эти отклонения по мере их возникновения просчитываются с точки зрения их влияния на итоговый результат. И если отклонения превышают 3-5% от установленной итоговой величины, разрабатываются встречные мероприятия по недопущению такого отклонения. На основе этих мероприятий вводятся коррективы в сетевой график и все службы, которые задействованы в процессе, получают уведомление и обязаны скорректировать свои планы.

Такая система управления позволяет контролировать конечные результаты и достигать намеченных рубежей. При это разрабатывается схема управления группами результативности, которые являются основополагающими в решении поставленных проблем.

В решении поставленной проблемы важное значение имеет установление связи между различными группами. С этой целью устанавливается на основе сетевого графика управления производительностью те структурные подразделения, которые оказывают существенное влияние на итоговый результат и уже непосредственно осуществляется контроль за ситуацией в этих результативных группах.

Существует 10 ориентиров для организации, которые желают опробовать партисипативные программы управления продуктивностью:
1) программа начинается с оценки концепции стратегии фирмы и готовности применить эту систему у себя;
2) оценивается готовность коллектива и в первую очередь руководящего состав быть единомышленным в осуществлении этой программы;
3) необходимо проанализировать финансовые и трудовые ресурсы с точки зрения проведения семинаров;
4) возможности фирмы осуществить материальное стимулирование работников, которые будут ответственно относиться к осуществлению этой программы;
5) возможности фирмы быстро переориентировать в случае неудачи, т.е. анализируется гибкость управления фирмой и ее отдельными подразделениями, анализируется уровень управляемости всей системой.

Если в результате подготовки к осуществлению партисипативных программ все эти ориентиры положительны, то тогда с помощью консалтинговой фирмы разрабатывается модель управления продуктивностью и начинается ее внедрение. Часто фирмы не рискуют переводить на эти программы сразу все подразделения, и поэтому начинают как бы с точечных оптимизационных моделей, касающихся или только производственных структур или какого-то одного изделия, чаще на стадии его готовности. На этих

«помпонах» отрабатывается система управления, а затем после анализа полученных результатов разрабатывается и внедряется широкомасштабная партиспативная программа.

Методы прогнозирования производительности.

В настоящее время существует несколько наиболее часто применяемых методов прогнозирования производительности:
1. Одним из наиболее часто встречающихся методов является метод гармонических весов, который был предложен польским статистиком

Зигмундом Хеллвигом. Основная идея этого метода заключается в наблюдении временного ряда и затем все имеющиеся наблюдения взвешиваются таким образом, что более поздним наблюдением предается большее значение в принятии прогнозных решений, чем ранее полученным результатам. Такой метод прогноза позволяет вычислить средний прирост показателей, а затем оценить значение полученных приростов в каждом последующем приросте. Чем больше динамический ряд, тем больше система уравнений, и в результате решения которых получается ряд гармонических весов. На основе этого ряда рассчитывают среднюю величину прироста и просчитывают отклонения от этой средней. Полученные результаты обрабатываются с помощью расчета среднеквадратических отклонений, и полученный результат представляет собой допустимый коридор изменений, и закладывается на прогнозный период.

Этот метод апробировался на больших массивах информации и если экономическая ситуация сильно не меняется, то получают высоко вероятные цифры на перспективу.
2. Следующий метод используемы в прогнозировании называется Метод экспоненциального сглаживания. Он был разработан Р. Брауном и его сущность в том, что временной ряд сглаживается с помощью взвешенной скользящей средней величины, в которой веса подчинены экспоненциальному закону. Эта средняя может служить как для прогнозных расчетов, так и для оценки полученных текущих результатов, поскольку она характеризует значение процессов производительности на последнем этапе планируемого

(отчетного) периода. Этот метод используется в случаях, когда колебания показателя не столь велики и когда среднее отклонение не превышает 10-

12%. На основе полученной кривой строится перспективная кривая, отклонение показателей которой снова-таки не должны превышать установленного процента.
3. Метод построения авторегрессионых моделей. При анализе динамики и построении прогнозов возникает необходимость проверить гипотезу о том, что происходящие изменения с показателей производительности являются функцией времени. Зависимость от времени проявляется через характеристики внутренних структур процессов за прошлые периоды.

Такими характеристиками могут служить значения исследуемых показателей за ряд предыдущих моментов времени.

Модель стационарного процесса выражает значение продуктивности в виде линейной комбинации конечных результатов и называется моделью авторегрессии. Применение этих моделей возможно, когда из предварительного экономического анализа известно, что изучаемый процесс в значительной степени зависит от своего развития в предыдущие периоды и, таким образом, случайные величины попадают в системную зависимость и становятся той исходной базой, которая используется для прогноза. Очень часто в процессе прогнозирования используется объеденная модель авторегрессии. Эта модель построена на определении и оценки скользящего среднего коэффициента, по динамике которого формируется система уравнений, решение которой позволяет относительно точно спрогнозировать динамику производительности. Эти модели в практике прогнозирования носят названия АРИСС-модели. Если использовать метод адаптивной фильтрации исходных показателей, то точность АРИСС-моделей значительно повышается.

Поскольку показатель производительности является многомерным показателей, то используется метод автокорреляции гребневой регрессии и таким путем строятся модели прогноза производительности на основе пространственно-временной информации с учетом мультиколинеарности, что позволяет достичь наиболее реальных показателей на перспективу.
4. Построение моделей прогноза производительности труда на основе пространственно-временной информации.

Модели прогноза на основе пространственно-временной информации основаны на методах, которые несколько отличаются от ранее рассмотренных. В основе построения этих моделей лежит метод, сущность которого в: если у нас имеет п-ное количество временных рядов значений производительности, и они отражают влияние факторов на каждый из этих рядов, то изменение, которые происходят, описываются как линейными, так и степенными функциями. С их помощью определяются приросты по каждому ряду и если эти ряды отражают динамику производительности ряда предприятий, то полученные приросты составляют пространственно-временную информацию о деятельности этих предприятий за определенный промежуток времени.

С помощью линейных или степенных функций определяются факторы, наиболее весомые для показателя производительности. Поскольку не для каждого предприятия факторы будут неодинаковы, то получается система, которая описывается регрессионными моделями. Построение такой модели складывается из этапов:
V расчет трендов, которые описывают динамику производительности по каждому предприятию;
V расчет факторов, их весомости и трендов по каждому предприятию;
V построение многофакторной модели, которая увязывает прирост факторов и прирост производительности;
V по полученным коэффициентам строится матрица, которая служит исходной величиной для оценки ситуации с динамикой производительности в регионе ли отрасли.

Регрессионная модель позволяет на основе сложившейся динамики определить возможности роста производительности на ближайшую перспективу от факторов, которые являются наиболее весомыми и действенными для анализа временных рядов. Кроме того, анализируются и определяются наиболее влияющие факторы для исследований совокупности, и которые в дальнейшем используются для управления показателем производительности для совокупности.

На перспективу строится временной ряд показателей производительности с разбивкой по годам. По истечению каждого года сопоставляется прогнозный результат с фактическим и уточняется удельный вес влияния ранее установленных факторов на уровень производительности. Затем на основе полученных результатов уточняется прогнозный результат последующих периодов (лет), и если анализ факторов требует корректировки, то на следующий прогнозный период составляется план мероприятий, который включает в себя управление и новым фактором. Таким путем осуществляется регулирование процессов управления производительностью, как на уровне предприятия, так и большой совокупностью.

Пространственно-временная модель позволяет охватить большой массив информации и избежать искажения полученных или ожидаемых результатов и сводит к минимуму ошибку прогнозных расчетов. В этих моделей коэффициент множественной корреляции обычно превышает 0,8, что указывает на довольно высокую тесноту связи между приростами. Поэтому метод, основанный на пространственно-временной информации, является наиболее распространенным и часто используемым как за рубежом, так и на Украине. Высокая точность расчетов позволяет применять этот метод при прогнозных расчетах на больших массивах информации с целью получения прогнозного ряда производительности труда.

Однако, эти модели имеют и несколько недостатков, поскольку на перспективу они закладывают структуру связей между объектами и производительностью и ее факторами как неизменную, постоянную величину.

Как показал опыт, в ряде случаев, эта структура может значительно меняться. Поэтому параллельно с этими моделями используется динамическая модель производительности труда. Наиболее точное понятие динамической модели включает в себя такие элементы:
- общие закономерности изменения явления во времени;
- периодическое запаздывание влияния факторов аргументов;
- закономерности изменения во времени структуры влияния факторов аргументов.

Динамическая модель при своем построении проходит этапы: на основе установления факторов влияющих на производительность устанавливается закономерность этих факторов и строится многофакторная регрессионная модель, с помощью которой определяется влияние факторов аргументов на показатели производительности. Затем рассчитываются коэффициенты регрессии и на их основе оцениваются динамические модели производительности труда на перспективу. При этом, главным условием является наличие больших временных рядов и на их основе строятся доверительные интервалы, на основе которых рассчитывают динамику производительности и оценивают факторы, которые наиболее часто отражаются на показателях производительности. Динамические модели, в отличие от статических, в значительной степени учитывают перспективные возможности исследования показателя, что дает возможность более обосновано строить прогнозы и оценивать ситуацию в будущем. Изменение во времени коэффициентов регрессии показывает, что для показателей производительности наиболее весомым факторами являются технические и количественные факторы.

На каждый временной ряд, получившейся в результате использования динамических моделей, проводят анализ, который делает прогноз более реальным и предпочтительным по сравнению с другими методами.



Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.