Рефераты. Разработка процессорного модуля аппарата искусственной вентиляции лёгких

Наконец, сумма дыхательного объема и резервного объема вдоха со­ставляет емкость вдоха. Таким образом , емкость вдоха - это максимальное ко­личество воздуха, которое можно вдохнуть после спокойного выдоха.

Общая емкость легких — количество воздуха, содержащееся в легких на высоте максимального вдоха. Из всех этих величин наибольшее значение, кро­ме дыхательного объема, имеют жизненная емкость легких и функциональная остаточная емкость.

Из общего количества воздуха, вдыхаемого в нормальных условиях человеком , около 150 мл не попадает в альвеолы и распределяется в верх­них дыхательных путях - глотке ,гортани , трахее и бронхах , т. е. в так называемом мертвом пространстве , и , следовательно не участвует в газообмене.

Общее, или физиологическое, мертвое пространство делится на две части .Первая часть - анатомическое мертвое пространство , которое при очень больших дыхательных объемах может увеличиваться приблизительно на 50% , а при очень малых - уменьшаться почти до неопределимых раз-

меров . Вторая часть , альвеолярное мертвое пространство , определяется как разность между физиологическим и анатомическим мертвыми про­странствами . У здорового человека в состоянии покоя альвеолярное мерт­вое пространство весьма невелико , поэтому физиологическое (общее) мертвое   пространство приблизительно равно анатомическому и составляет около 30% дыхательного объема.

Анатомическим мертвым пространством называют объем воздухонос­ных путей, потому что в них не происходит газообмена. Это пространство включает носовую и ротовую полости, глотку, гортань, трахею, бронхи и брон­хиолы. Объем мертвого пространства зависит от роста и положения тела. При­ближенно можно считать, что у сидящего человека объем мертвого пространст­ва (в миллилитрах) равен удвоенной массе тела (в килограммах). Таким обра­зом, у взрослых он равен около 150 мл. При глубоком дыхании он возрастает, так как при расправлении грудной клетки расширяются и бронхи с бронхиола­ми.

Под функциональным (физиологическим) мертвым пространством по­нимают все те участки дыхательной системы, в которых не происходит газооб­мена. К функциональному мертвому пространству, в отличие от анатомическо­го, относятся не только воздухоносные пути, но также и те альвеолы, которые вентилируются, но не перфузируются кровью. В таких альвеолах газообмен не­возможен, хотя их вентиляция и происходит. В здоровых легких количество по­добных альвеол невелико, поэтому в норме объемы анатомического и функцио­нального мертвого пространства практически одинаковы. Однако при некото­рых нарушениях функции легких, когда легкие вентилируются и снабжаются кровью неравномерно, объем второго может оказаться значительно больше объема первого.

Объем легочной вентиляции удобно определить как объем   газа, по­ступающего в дыхательные пути и покидающего их  за  определенный   от-

резок   времени. Для этой цели используют минутный объем вентиляции,/\

который определяется как сумма дыхательных объемов за минуту.

Минутный объем дыхания, т.е. объем воздуха, вдыхаемого (или выдыхае­мого) за 1 мин, равен по определению произведению дыхательного объема и частоты дыхательных движений. Экспираторный объем обычно меньше инспи-раторного, так как поглощение О2 превышает величину выделения СО2 (дыха­тельный коэффициент меньше 1). Для большей точности следует различать ин-спираторный и экспираторный минутные объемы дыхания. При расчетах вен­тиляции принято исходить из экспираторных объемов, помечаемых "э".

Частота дыхательных движений у взрослого человека в покое в среднем равна 14/мин. Она может претерпевать значительные колебания (от 10 до 18 за 1 мин). Частота дыхательных движений выше у детей (20-30/мин); у грудных детей она составляет 30-40/мин, а у новорожденных - 40-50/мин.

Часть минутного объема дыхания, достигающая альвеол, называется аль­веолярной вентиляцией; остальная его часть составляет вентиляцию мертвого пространства. Если частота дыхательных движений равна 14/мин, ДО = 0, 5 л, альвеолярный объем 0,35 л, общая вентиляция легких составит 7 л/мин, альвео­лярная вентиляция - 5 л/мин., а вентиляция мертвого пространствам 2 л/мин . Альвеолярная вентиляция служит показателем эффективности дыхания в целом. Именно от этой величины зависит газовый состав, поддерживаемый в альвеолярном пространстве. Что касается минутного объема, то он лишь в не­значительной степени отражает эффективность вентиляции легких. Так,  если минутный  объем  дыхания  нормальный,  но  дыхание частое и поверхностное, то вентилироваться будет главным образом мертвое пространство,  в которое воз­дух поступает раньше, чем  в  альвеолярное;  в этом случае вдыхаемый воздух почти не будет достигать альвеол. Такое дыхание иногда наблюдается при циркуляторном шоке и представляет собой крайне опасное состояние.

 Поскольку объем мертвого пространства постоянен, альвеолярная вентиляция тем больше, чем глубже дыхание.Одна из первых трудностей, с которыми приходится сталкиваться при оп­ределении содержания газов в альвеолах, связана с получением проб альвео­лярной газовой смеси. При выдохе из воздухоносных путей сначала удаляется воздух мертвого пространства и лишь после этого начинает выходить воздух из альвеол. Однако даже к концу выдоха состав выдыхаемой смеси постоянно пре­терпевает небольшие изменения, обусловленные тем, что в альвеолах продол­жается газообмен. В связи с этим были разработаны специальные устройства, позволяющие при помощи механических или электронных приспособлений производить забор последней порции выдыхаемого воздуха при каждом дыха­тельном цикле.

После получения пробы альвеолярной газовой смеси можно с помощью спе­циальной аппаратуры определить содержание в ней различных газов.

Существуют газоанализаторы, позволяющие непрерывно регистрировать содержание газов в выдыхаемой смеси. Принцип подобных приборов, изме­ряющих концентрацию СО2, основан на поглощении этим газом инфракрасных лучей. Для определения содержания обоих газов используют также масс-спектрометры. Преимущество этих методов заключается в том, что благодаря непрерывной записи содержание газов в любой момент времени можно опреде­лить непосредственно по кривой, так что не требуется производить отбор се­рийных проб из альвеол.

Эффективность газообмена в легких зависит от того ,как распределяет­ся   объем вдыхаемого   воздуха  в альвеолах и   кровоток   в легочных сосу­дах . В идеальном случае   на каждый  литр протекающей по легочным сосудам   крови   в минуту должно приходится 0,8 л   альвеолярного воздуха, т.е.   так называемый    вентиляционно- перфузионный коэффициент равен

0,8 . В клинических   условиях   эта величина может  варьироваться от нуля до бесконечности.

Непременным условием нормального газообмена является   нормальный процесс диффузии   кислорода    из альвеол в кровь легочных капилляров, а   углекислого газа в обратном   направлении.   Процесс    перехода   газов из альвеолы   в кровь   и обратно   представляет   собой   диффузию   через проницаемую   мембрану .

Вдох является   активным   процессом,   обусловленным синхронным сокращением дыхательных мышц. Во время вдоха   в грудной полости создается    отрицательное давление и происходит   засасывание   воздуха в трахею , бронхи и альвеолы.

Дыхательным   мышцам   при   вдохе    приходится   преодолевать   эласти­ческое   сопротивление   легочной ткани и сопротивление дыхательных пу­тей проходящему по ним потоку воздуха. Нормальный   ( нефорсирован­ный ) выдох представляется процессом пассивным   , обусловленным рас­слаблением   дыхательной   мускулатуры   и   впадением грудной клетки и легких   под влиянием   эластических   сил и   поверхностного натяжения альвеол .

Сила сокращений дыхательной мускулатуры при вентиляции легких на­правлена на преодоление упругих и вязких сопротивлений. При очень медлен­ном дыхании вязкие сопротивления весьма невелики, поэтому соотношение между объемом и эффективным давлением в дыхательной системе почти цели­ком определяется упругими (эластическими) свойствами легких и грудной клетки.

При вдохе и выдохе дыхательная система преодолевает неэластическое (вязкое) сопротивление, которое складывается из следующих компонентов: 1) аэродинамического сопротивления воздухоносных путей; 2) вязкого сопротив-

ления тканей; 3) инерционного сопротивления (последнее настолько мало, что им можно пренебречь).

Вдыхаемый или выдыхаемый воздух движется по воздухоносным путям под действием градиента давления между полостью рта и альвеолами. Этот градиент давления служит движущей силой для переноса дыхательных газов.. Неэластическое сопротивление равно сумме сопротивления воздухоносных путей и сопротивления тканей. Сопротивление тканей сравнительно невелико: в норме общее неэластическое сопротивление легких на 90% создается сопро­тивлением воздухоносных путей, и лишь на 10%-сопротивлением тканей.

При повышенном   аэродинамическом сопротивлении   дыхательных пу­тей наблюдается  характерное снижение   частоты   спонтанного   дыхания  и увеличении  дыхательного объема. Обратное   явление   происходит при увеличении   эластического   сопротивления    , когда частота   дыхания    за­метно   увеличивается  и может  стать   в   2--3   раза больше     нормальной   , а  дыхательный   объем   уменьшится.

Остановка дыхания независимо от вызвавшей ее причины смертельно опасна. С момента остановки дыхания и кровообращения человек находится в состоянии клинический смерти. Как правило, уже через 5-10 мин недостаток О2 и накопление СО2 приводят к необратимым повреждениям клеток жизненно важных органов, в результате чего наступает биологическая смерть. Если за этот короткий срок провести реанимационные мероприятия, то человека можно спасти.

К нарушению дыхания могут привести самые разное причины, в том числе закупорка дыхательных путей, повреждение грудкой клетки, резкое нарушение газообмена и угнетение дыхательных центров вследствие повреждения голов­ного мозга или отравления. В течение некоторого времени после внезапной ос­тановки дыхания кровообращение еще сохраняется: пульс на сонной артерии

определяется в течение 3-5 мин после последнего вдоха. В случае же внезапной остановки сердца дыхательные движения прекращаются уже через 30-60 с.

Работа , производимая дыхательными мышцами  для вентиляции   лег­ких   , направлена    на преодоление   всех   видов сопротивления . .Следовательно , чем   выше сопротивление , тем большую работу   выпол­няет   дыхательная   мускулатура.   Потребление   кислорода дыхательными мышцами   в норме   составляет  около 3%   общего потребления его   орга­низмом . Однако при физической нагрузке энергетические потребности дыха­тельных мышц возрастают в большей степени, чем минутный объем дыхания и поглощение О2. В связи с этим при тяжелой физической работе на деятельность дыхательной мускулатуры затрачивается до 20% общего потребления кислоро­да.

Величины легочных объемов и емкостей значительно варьируют. Ко­лебания в норме настолько велики, что целесообразно приводить лишь средние цифровые границы. У взрослых людей максимальная емкость     легких    со­ставляет 4500 - 6000 мл, из них остаточный объем — 1000 - 1500 мл, резерв­ный объем выдоха — 1500 - 2000 мл, дыхательный объем — 300 - 600 мл, ре­зервный объем вдоха — 1500 - 2000 мл.

Перемещение воздуха между внешней средой и легкими, т. е. вентиляция легких, осуществляется благодаря разнице давлений во внешней среде и в аль­веолах, при этом воздух всегда перемещается из области с более высоким в об­ласть с более низким давлением. При самостоятельном дыхании во время вдоха усилие дыхательных мышц, преодолевая эластическое сопротивление легких, увеличивает объем грудной клетки и создает необходимую разницу давлений между внешней средой и легкими. При ИВЛ перемещение воздуха (дыхатель­ной смеси) между внешней средой и легкими совершается под действием внешней силы, создающей необходимую разность давлений.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.