Рефераты. Литература - Патофизиология (Повреждение клетки) p> 2. Нарушение образования вторичных посредников.

3. Нарушение фосфорилирования протеинкиназ.

Повреждение клеток может быть специфическим и неспеци- фическим. По существу, каждое повреждение вызывается наруше- нием структуры и функции клеток тем или иным болезнетворным началом. Поэтому специфическое проявление повреждения на лю- бом уровне прямо или косвенно связано с особенностями дейс- твия этиологического фактора, вызывающего данное повреждение.

Специфические формы повреждения можно усмотреть при анализе любого его вида. Например, при механической травме - это нарушение целостности структуры ткани,при иммунном гемо- лизе - изменение свойств мембраны эритроцитов под влиянием гемолизина и комплемента, радиационное повреждение - образо- вание свободных радикалов с последующим нарушением окисли- тельных процессов. Подобных примеров можно привести очень много.

Специфическим повреждениям клеток сопутствуют или сле- дуют за ними и общие неспецифические проявления повреждения, на которых мы остановимся более подробно.

_Первым и наиболее общим неспецифическим выражением пов-
_реждения клетки ., вызванного любым агентом,является нарушение неравновесного состояния клетки и среды, что является общей характеристикой всего живого, независимо от уровня его орга- низации. Организм обладает массой приспособлений, питаемых энергией пищевых веществ, с помощью которых он поддерживает состояние, препятствующее уравновешиванию диффузионных, ос- мотических, тепловых, электрических процессов с окружающей средой. Полное прекращение жизни - смерть характеризуется, как известно, постепенным прекращением неравновесного состо- яния и переходом его в состояние полного равновесия с окру- жающей средой.

С энергетической точки зрения, повреждение как наруше- ние неравновесного состояния живой системы сопровождается высвобождения дополнительной энергии в виде тепловой, элект- рической (потенциал повреждения), химической (снижение ре- докс-потенциала) и так называемой структурной энергии клеток и тканей.

Структурная энергия освобождается при _денатурации структур цитоплазмы и клеточных органоидов. Денатурация - повреждение молекул белка, имеет много показателей, такие, как величина энтропии, степень упорядоченности молекул.

Этот процесс в химическом смысле сопровождается сглажи- ванием, исчезновением третичной и четвертичной структур бел- ка, расплавлением полипептидных цепей, изменением активности сульфгидрильных групп и т.д.

Повреждение клеток выражается еще и _нарушением структу-
_ры и функции мембран .. Вообще способность формировать мембра- ны является решающей в образовании клетки и ее субклеточных органелл. Любое нарушение сопровождается изменением проница- емости клеточных мембран и состояния цитоплазмы поврежденной клетки. Повреждение клеточных мембран, согласно модели Син- гера, может быть обусловлено деструкцией их липидных или белковых (ферментных) компонентов.

Повреждение липидных компонентов клеточных и субклеточ- ных мембран возникает несколькими путями. Важнейшими из них являются перекисное окисление липидов (ПОЛ), активация мемб- ранных фосфолипаз, осмотическое растяжение пептидной основы мембран, повреждающееся воздействие иммунных комплексов.

Суммарным выражением патологии клеточной мембраны может служить нарушение ее основных функций:

1) мембранного транспорта;

2) изменение проницаемости мембраны;

3) изменение коммуникации клеток и их "узнавания";

4) изменение подвижности мембран и формы клеток;

5) изменение синтеза и обмена мембран.

_Мембранный транспорт . предполагает перенос ионов и дру- гих субстратов против градиента концентрации. При этом нару- шается функция клеточных насосов и ингибируются процессы ре- гуляции обмена веществ между клеткой и окружающей ее средой.
Молекулярный механизм работы клеточных насосов до конца не расшифрован и в настоящее время. Энергетической основой их работы являются процессы фосфорилирования и дефосфорилирова- ния ферментов - аденозинфосфатаз за счет энергии АТФ. Эти ферменты "вмонтированы" в белковую часть клеточных мембран.
Там же работают ионные каналы, через которые проходят в клетку и из клетки ионы, вода и другие вещества (например, аминокислоты). В зависимости от вида проходящих по каналу ионов различают Na-K-АТФазу, Ca-Mg-АТФазу, Н-АТФазу.
Особое значение имеет работа Na-K-насоса, результатом которой является превышение концентрации ионов К+ внутри клетки приблизительно в 20-30 раз по сравнению с внеклеточ- ной. Соответственно этому, концентрация ионов Na+ внутри клетки приблизительно в 10 раз меньше, чем снаружи.

Повреждение Na-K-насоса вызывает освобождение ионов К из клетки и накопление в ней ионов Na, что характерно для гипоксических состояний, токсических повреждений клетки (яд кобры, каракурта), инфекционных поражений, аллергии, сниже- ния температуры внешней среды. С транспортом ионов Na и К тесно связан транспорт ионов Са. Интегральное выражение этих нарушений хорошо иллюстрируется на примере гипоксии миокар- да, которая прежде всего проявляется патологией митохондрий.

Следует отметить, что повреждение мембран митохондрий являлется ключом клеточного повреждения. В его прогрессиро- вании большая роль принадлежит нарушению контроля уровня кальция в цитоплазме. Ишемическое повреждение митохондрий приводит к нарушению функции Na-К-АТФазного насоса, посте- пенному накоплению в клетке Na и потере ею калия, что в со- вокупности ведет к вытеснению Са из митохондрий. В результа- те повышается уровень ионизированного кальция в цитоплазме и увеличивается его связь с кальмодулином, что, в свою оче- редь, приводит к расхождению клеточных стыков, активации фосфолипаз. Эндоплазматическая сеть накапливает воду и ионы, следствием чего является развитие гидропической дистрофии.
Усиление гликолиза сопровождается истощением гликогена, на- коплением лактата и снижением рН. Таким образом, накопление
Са в клетке можно считать универсальным механизмом клеточной деструкции.

Кроме того, хорошо известно участие Са в освобождении медиаторов аллергии из тучных клеток. По современным данным, их аллергическая травма сопровождается разжижением мембраны, разрыхлением и увеличением проводимости кальциевых каналов.
Са, проникая в большом количестве внутрь клетки, способству- ет освобождению гистамина и других медиаторов из гранул.

_Проницаемость мембран . - качество мембраны, позволяющее поддерживать обмен клетки со средой и осуществлять контроль
"перекрытых каналов", связанный с метаболизмом энергии и конформацией белка. Проницаемость мембраны позволяет поддер- живать не только постоянство электролитного состава клетки - ионный гомеостаз, но и ионный гетерогенитет, т.е. вполне оп- ределенные, резко выраженные различия ионного состава внут- риклеточной м внешней среды. Donnan (1911) предложил уравне- ние равновесия концентрации анионов и катионов по обе сторо- ны полунепроницаемой мембраны, согласно которому произведе- ния концентрации противоположно заряженных ионов по обе сто- роны мембраны равны между собой.

В качестве примера изменения проницаемости для ионов мембраны эритроцитов при иммунной травме следует указать на специфический гемолиз. Процесс гемолиза начинается с увели- чения проницаемости мембраны эритроцитов для ионов К, Na,
Ca. Нарушается функция Na-К-насоса, из эритроцитов выходит
К, а входит Na. Увеличивается проницаемость мембран для мо- лекул глюкозы, аминокислот и ряда других метаболитов. Тормо- зится обмен Cl- и HCO3- (феномен Гамбургера) и Cl- и SO4-- за счет фиксации на эритроците гемолизина и комплемента.

_Коммуникация клеток и их "узнавание" ..

Клеточное "общение" и "узнавание" подразумевают прежде всего различия во внешних поверхностях плазматических мемб- ран и мембран внутриклеточных органелл. В этом отношении особый интерес представляет гликокаликс мембраны с поверх- ностными антигенами-маркерами определенного типа клеток.

При различных патологических процессах (воспаление, ре- генерация, опухолевый рост) поверхностные антигены могут из- меняться, причем различия могут касаться как типа антигена, так и его доступности со стороны внеклеточного пространства.
Например, изменения гликолипидов мембраны делают ее более доступной воздействию антител. Известно также, что изменения с поверхностью мембраны протеиназ могут влиять на прочность связей мембранных компонентов с цитоскелетом и тем самым на подвижность клеток.

Коммуникабельность клеток определяется и состоянием клеточных стыков, которые могут повреждаться при различных патологических состояниях и болезнях.

Межклеточное взаимодействие и кооперация клеток связаны с клеточной рецепцией и медиацией, нарушение которой ведет к разнообразной патологии клеток.

_Подвижность мембран и форма клеток .. Различают два типа изменений; выпячивание мембраны наружу - экзотропия, и выпя- чивание мембраны внутрь цитоплазмы - эзотропия. Изменения формы клеток связаны не только с этими двумя типами измене- ний, нередко речь идет об упрощении клеточной поверхности, т.е. потере специфических образований, без которых невозмож- но нормальное функционирование клетки (например, потеря мик- роворсинок энтероцитами).

_Синтез мембран . может усиливаться либо снижаться, также как и обмен мембран при некоторых заболеваниях.

Следующим неспецифическим проявлением повреждения клет- ки можно считать _ потенциал повреждения . (или так называемый мембранный потенциал), который представляет собой разность потенциалов между неповрежденной и поврежденной ее поверх- ностями. Поврежденная ткань (или клетка) становится электро- отрицательной по отношению к своим неповрежденным участкам.
Разность потенциалов обусловлена уменьшением количества ио- нов К на поврежденной поверхности. Мембранный потенциал кле- ток печени крысы при гипоксии снижается с -60 до -80 mВ.

Одним из важнейших неспецифических выражений поврежде- ния тканей и клеток является _ нарушение обмена воды . в тканях и клетках. Оно заключается в том, что в поврежденной клетке вода освобождается из цитоплазмы и выходит в окружающюю сре- ду. Соответственно увеличивается содержание экстрацеллюляр- ной воды и возникает травматический отек. Примером может служить отек мозга и т.д. Чем сильнее повреждение, тем боль- ше поврежденная ткань отдает воды в межклеточную жидкость, кровь и лимфу. Например, при переломе бедра из поврежденных тканей за 5 суток переходит в кровь и лимфу до 8 л воды.

_Изменение электропроводности . как показатель повреждения клеток и тканей выражает прежде всего изменение емкостных свойств не только поверхностных цитоплазматических, но и внутренних мембран эндоплазматической сети и клеточных орга- ноидов, которые выполняют роль конденсаторов, а содержимое клеток - роль раствора, содержащего коллоиды и кристаллоиды.
Как известно, клетки обладают не только омическим, но и ем- костным сопротивлением, суммарная величина которых называет- ся _импеданс .. Применение этого показателя в качестве диагнос- тического метода разрабатывается на кафедре физики нашего института.

Распространение повреждения вглубь клетки травмирует ее органоиды и нарушает активность связанных с ними _ ферментных
_систем .. В митохондриях поврежденной клетки происходят раз- личные нарушения активности окислительных ферментов (цитох- ромоксидазы и др.). Вследствие этого интенсивность клеточно- го дыхания снижается, активируются внутриклеточные протеазы, что приводит к накоплению кислых продуктов протеолиза и сни- жению рН клеточной среды. Эти процессы лежат в основе _ауто-
_лиза . поврежденных клеток.

_Уменьшение окислительного фосфорилирования ., оценивающе- еся отношением убыли неорганического Р к количеству поглоща- емого кислорода, так же может служить признаком повреждения клетки.

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.