Рефераты. История развития, достижения в биотехнологиях

Анаэробные микроорганизмы успешно используются для пере­работки отходов (биомассы растений, отходов пищевой промыш­ленности, бытовых отходов и др.) и стоков (бытовые и промышлен­ные стоки, навоз) в биогаз.

В последние годы расширяется применение смешанных куль­тур микроорганизмов и их природных ассоциаций. В реальной био­логической ситуации в природе микроорганизмы существуют в виде сообществ различных популяций, тесно связанных между со­бой и осуществляющих круговорот веществ в природе.

Основные преимущества смешанных культур по сравнению с монокультурами следующие:

-   способность утилизировать сложные, неоднородные по со­ставу субстраты, зачастую непригодные для монокультур;

-   способность к минерализации сложных органических соеди­нений;

-   повышенная способность к биотрансформации органических веществ;

-   повышенная устойчивость к токсичным веществам, в том чис­ле тяжелым металлам;

-   повышенная устойчивость к воздействию окружающей среды;

-   повышенная продуктивность;

-   возможный обмен генетической информацией между отдель­ными видами сообщества.

Следует особо выделить такую группу биологических объектов, как ферменты-катализаторы биологического происхождения, изуче­нием которых в прикладном аспекте занимается инженерная энзимология. Основная ее задача - разработка биотехнологических про­цессов, в которых используется каталитическое действие энзимов, как правило, выделенных из состава биологических систем или находящихся внутри клеток, искусственно лишенных способнос­ти роста. Благодаря ферментам скорость реакций по сравнению с реакциями, протекающими в отсутствие этих катализаторов, возрастает в 10б- 1012раз.

Как отдельную отрасль создания и использования биологических объектов следует выделить иммобилизованные биологические объек­ты. Иммобилизованный объект представляет собой гармоничную систему, действие которой в целом определяется правильным подбо­ром трех основных компонентов: биологического объекта, носителя и способа связывания объекта с носителем.

В основном используются следующие группы методов мобилиза­ции биологических объектов:

-  включение в гели, микрокапсулы;

-  адсорбция на нерастворимых носителях;

-  ковалентное связывание с носителем;

-  сшивка бифункциональными реагентами без использования но­сителя;

- «самоагрегация» в случае интактных клеток.

Основными преимуществами использования иммобилизованных биологических объектов являются:

- высокая активность;

- возможность контроля за микроокружением агента;

   возможность полного и быстрого отделения целевых продук­тов;

-  возможность организации непрерывных процессов с многократ­ным использованием объекта.

Как следует из вышеизложенного, в биотехнологичиеских про­цессах возможно использование ряда биологических объектов, ха­рактеризующихся различными уровнями сложности биологической регуляции, например клеточным, субклеточным, молекулярным. От особенностей конкретного биологического объекта самым непос­редственным образом зависит подход к созданию всей биотехноло­гической системы в целом.

В результате фундаментальных биологических исследований уг­лубляются и расширяются знания о природе и, тем самым, о воз­можностях прикладного использования той или иной биологичес­кой системы в качестве активного начала биотехнологического процесса. Набор биологических объектов непрерывно пополняется.

1.4. Основные направления развития методов биотехнологии в ветеринарии

За последние 40 - 50 лет произошло скачкообразное развитие боль­шинства наук, что привело к форменной революции в производстве ветеринарных и медицинских биопрепаратов, созданию трансгенных растений и животных с заданными уникальными свойствами. По­добные исследования являются приоритетными направлениями на­учно-технического прогресса и в XXI в. займут ведущее место среди всех наук.

Даже простое перечисление товарных форм биопрепаратов ука­зывает на неограниченные возможности биотехнологии. Однако этот важный вопрос заслуживает некоторой детализации.

На наш взгляд, возможности биотехнологии особенно впечатля­ющи в трех основных направлениях.

Первое - это крупнотоннажное производство микробного белка для кормовых целей (вначале - на основе гидролизатов древесины, а затем - на основе углеводородов нефти).

Важную роль играет производство незаменимых аминокислот, необходимых для сбалансированности по аминокислотному составу кормовых добавок.

Кроме кормового белка, аминокислот, витаминов и других кормо­вых добавок, увеличивающих питательную ценность кормов, быст­ро расширяются возможности массового производства и примене­ния вирусных и бактериальных препаратов для профилактики бо­лезней птиц и сельскохозяйственных животных, для эффективной борьбы с вредителями сельскохозяйственных растений. Микробиологические препараты, в отличие от многих химичес­ких, обладают высокой специфичностью действия на вредных насе­комых и фитопатогенные микроорганизмы, они безвредны для чело­века и животных, птиц и полезных насекомых. Наряду с прямым уничтожением вредителей в период обработки они действуют на потомство, снижая его плодовитость, не вызывают образования ус­тойчивых форм вредных организмов.

Огромны возможности биотехнологии в области производства ферментных препаратов для переработки сельскохозяйственно­го сырья, создания новых кормов для животноводства.

Второе направление - разработки в интересах развития био­логической науки, здравоохранения и ветеринарии. На основе дости­жений генной инженерии и молекулярной биологии биотехнология может обеспечить здравоохранение высокоэффективными вакцинами и антибиотиками, моноклональными антителами, интерфероном, ви­таминами, аминокислотами, а также ферментами и другими био­препаратами для исследовательских и лечебных целей. Некоторые из этих препаратов уже сегодня с успехом применяются не только в научных экспериментах, но и в практической медицине и ветерина­рии.

Наконец, третье направление - разработки для промышленности. Уже сегодня продукцию биотехнологических производств потреб­ляют или применяют пищевая и легкая промышленность (фермен­ты), металлургия (использование некоторых веществ в процессах флотации, точного литья, прецизионного проката), нефтегазовая промышленность (использование ряда препаратов комплексной переработки растительных и микробных биомасс при бурении скважин, при селективной очистке и др.), резиновая и лакокра­сочная промышленность (улучшение качества синтетического ка­учука за счет некоторых белковых добавок), а также ряд других про­изводств.

К числу активно разрабатываемых направлений биотехнологии относятся биоэлектроника и биоэлектрохимия, бионика, нанотехнология, в которых используются либо биологические системы, либо принципы действия таких систем.

Широко в научных исследованиях применяются ферментсодержащие датчики. На их основе разработан ряд устройств, например, дешевые, точные и надежные приборы для проведения анализов. Появляются и биоэлектронные иммуносенсоры, причем в не­которых из них используется полевой эффект транзисторов. На их основе предполагается создавать относительно дешевые приборы, способные определять и поддерживать на заданном уровне концент­рацию широкого круга веществ в жидкостях тела, что может вызвать переворот в биологической диагностике.

Достижения ветеринарной биотехнологии. В России биотехно­логия как наука начала развиваться с 1896 г. Толчком послужила необхо­димость создавать профилактические и терапевтические средства против таких болезней как сибирская язва, чума крупного рогатого скота, бешен­ство, ящур, трихинеллез. В конце XIX в. ежегодно от сибирской язвы гибло более 50 тыс. животных и 20 тыс. людей. За 1881 - 1906 гг. от чумы пало 3,5 млн коров. Значительный ущерб наносил сап, от которого гибло конское поголовье и люди.

Успехи отечественной ветеринарной науки и практики в проведении специфической профилактики инфекционных болезней связаны с круп­ными научными открытиями, сделанными в конце XIX и начале XX столетий. Это касалось разработки и внедрения в ветеринарную практику профилактических и диагностических препаратов при карантин­ных и особо опасных болезнях животных (вакцины против сибирской язвы, чумы, бешенства, аллергенов для диагностики туберкулеза, сапа и др). Была научно доказана возможность приготовления лечебных и ди­агностических гипериммунных сывороток.

На этот период приходится фактическая организация в России само­стоятельной биологической промышленности.

С 1930 г. существующие в России ветеринарные бактериологичес­кие лаборатории и институты стали существенно расширяться, и на их базе было начато строительство крупных биологических фабрик и био­комбинатов по производству вакцин, сывороток, диагностикумов для ветеринарных целей. В этот период разрабатываются технологические процессы, научно-технологическая документация, а также единые ме­тоды (стандарты) изготовления, контроля и применения препаратов в животноводстве и ветеринарии.

В 30-е годы были построены первые заводы по получению кор­мовых дрожжей на гидролизатах древесины, сельскохозяйственных отходах и сульфитных щелоках под руководством В.Н.Шапошнико­ва. Успешно внедрена технология микробиологического производ­ства ацетона и бутанола (рис. 2).

Большую роль в создание основ отечественной биотехнологии внесло его учение двухфазном характере брожения. В 1926 г. в СССР были исследованы биоэнергетические закономерности окисления углеводородов микроорганизмами. В последующие годы биотехно­логические разработки широко использовались в нашей стране для расширения «ассортимента» антибиотиков для медицины и животно­водства, ферментов, витаминов, ростовых веществ, пестицидов.

Рис. 2. Биопредприятие с замкнутым циклом производства, не загрязняющее окружающую среду

С момента создания в 1963 г. Всесоюзного научно-исследо­вательского института биосинтеза белковых веществ в нашей стра­не налаживается крупнотоннажное производство богатой белками биомассы микроорганизмов как корма.

В 1966 г. микробиологическая промышленность была выделена в отдельную отрасль и создано Главное управление микробиологичес­кой промышленности при Совете Министров СССР - Главмикробиопром.

С 1970 г. в нашей стране ведутся интенсивные исследования по селекции культур микроорганизмов для непрерывного культивиро­вания в промышленных целях.

В разработку генно-инженерных методов советские исследователи включились в 1972 г. Следует указать на успешное осуществление в СССР проекта «Ревертаза» - получение в промышленных масшта­бах фермента «обратной транскриптазы».

Развитие методов изучения структуры белков, выяснение меха­низмов функционирования и регуляции активности ферментов от­крыли путь к направленной модификации белков и привели к рожде­нию инженерной энзимологии. Иммобилизованные ферменты, об­ладающие высокой стабильностью, становятся мощным инструмен­том для осуществления каталитических реакций в различных отрас­лях промышленности.

Все эти достижения поставили биотехнологию на новый уровень, качественно отличающийся от прежнего возможностью сознательно управлять клеточными процессами биосинтеза.

За годы становления промышленного производства биологических препаратов в нашей стране произошли существенные качественные из­менения биотехнологических приемов их получения:

- проведены исследования по получению стойких, с наследственно закрепленными свойствами, авирулентных штаммов микроорганизмов, из которых готовят живые вакцины;

- разработаны новые питательные среды для культивирования мик­роорганизмов, в том числе и на основе гидролизатов и экстрактов из сырья непищевого назначения;

- получены высококачественные сывороточные питательные среды для лептоспир и других трудно культивируемых микроорганизмов;

- разработан глубинный реакторный способ культивирования мно­гих видов бактерий, грибов и некоторых вирусов;

- получены новые штаммы и линии клеток, чувствительных ко мно­гим вирусам, что обеспечило приготовление и получение стандартных и более активных противовирусных вакцин;

- механизированы и автоматизированы все процессы производства;

- разработаны и внедрены в производство современные методы кон­центрирования культур микроорганизмов и сублимационной сушки биопрепаратов;

- снижены энергозатраты на получение единицы продукции, стан­дартизировано и улучшено качество биопрепаратов;

- повышена культура производства биопрепаратов.

Уделяя большое внимание разработкам ветеринарных биопрепаратов дня профилактики, диагностики инфекционных болезней и лечения больных животных, в нашей стране постоянно ведется работа по совершен­ствованию промышленной технологии, освоению производства более эффективных, дешевых и стандартных препаратов. При этом основными требованиями являются:

-  использование мирового опыта;

-  экономия ресурсов;

-  сохранение производственных площадей;

-  приобретение и монтаж современного оборудования и технологи­ческих линий;

-  проведение научных исследований по разработке и изысканию но­вых видов биопродуктов, новых и дешевых рецептов приготовления пи­тательных сред;

  - изыскание более активных штаммов микроорганизмов в отно­шении их антигенных, иммуногенных и продуктивных свойств.






























Федеральное государственное общеобразовательное учреждение высшего профессионального образования «Московская государственная академия ветеринарной медицины и биотехнологий им. К.И.Скрябиан»

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Реферат по биотехнологии

 

«Лекция № 1»

 

 

 

 

 

 

 

 

 

Работу выполнила

Студентка ФВМ

4 курса, 11 группы

Гордон Мария

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Москва 2006



Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.