Особенно мощный толчок в развитии промышленного биотехнологического оборудования был отмечен в период становления и развития производства антибиотиков (время второй мировой войны 1939-1945 гг., когда возникла острая необходимость в противомикробных препаратах для лечения больных с инфицированными ранами).
Все прогрессивное в области биотехнологических и технических дисциплин, достигнутое к тому времени, нашло свое отражение в биотехнологии:
- 1936 - были решены основные задачи по конструированию, созданию и внедрению в практику необходимого оборудования, в том числе главного из них - биореактора (ферментера, аппарата-культиватора);
- 1938 - А. Тизелиус разработал теорию электрофореза;
- 1942 - М. Дельбрюк и Т. Андерсон впервые увидели вирусы с помощью электронного микроскопа;
- 1943 - пенициллин произведен в промышленных масштабах;
- 1949 - Дж. Ледерберг открыл процесс конъюгации у Е.colly;
- 1950 - Ж. Моно разработал теоретические основы непрерывного управляемого культивирования микробов, которые развили в своих исследованиях М. Стефенсон, И. Молек, М. Иерусалимский, И. Работнова, И. Помозгова, И. Баснакьян, В. Бирюков;
-1951 - М. Тейлер разработал вакцину против желтой лихорадки;
- 1952 - У. Хейс описал плазмиду как внехромосомный фактор наследственности;
-1953 - Ф. Крик и Дж. Уотсон расшифровали структуру ДНК. Это стало побудительным мотивом для разработки способов крупномасштабного культивирования клеток различного происхождения для получения клеточных продуктов и самих клеток;
- 1959 - японские ученые открыли плазмиды антибиотикоустойчивости (К-фактор) у дизентерийной бактерии;
- 1960 - С. Очоа и А. Корнберг выделили белки, которые могут «сшивать» или «склеивать» нуклеотиды в полимерные цепочки, синтезируя тем самым макромолекулы ДНК. Один из таких ферментов был выделен из кишечной палочки и назван ДНК-полимераза;
- 1961 - М. Ниренберг прочитал первые три буквы генетического кода для аминокислоты фенилаланина;
- 1962 - X. Корана синтезировал химическим способом функциональный ген;
-1969 - М. Беквит и С. Шапиро выделили ген 1ас-оперона у Е.colly;
- 1970 - выделен фермент рестриктаза (рестриктирующая эндонуклеаза).
4. Геннотехнический период начался с 1972 г., когда П. Берг создал первую рекомбинацию молекулы ДНК, тем самым показав возможность направленных манипуляцией с генетическим материалом бактерий.
Естественно, что без фундаментальной работы Ф. Крика и Дж. Уотсона по установлению структуры ДНК было бы невозможно достигнуть современных результатов в области биотехнологии. Выяснение механизмов функционирования и репликации ДНК, выделение и изучение специфичных ферментов привело к формированию строго научного подхода к разработке биотехнических процессов на основе генноинженерных манипуляций.
Создание новых методов исследований явилось необходимой предпосылкой развития биотехнологии в 4-ом периоде:
- 1975 - Г. Келлер и Ц. Мильштейн опубликовали в журнале «Ка1иге» статью «Длительноживущие культуры гибридных клеток, секретирующие антитела предопределенной «специфичности», в которой описали метод получения моноклональных антител;
- 1977 - М. Максам и У. Гилберт разработали метод анализа первичной структуры ДНК путем химической деградации, а Дж. Сэнгер - путем полимеразного копирования с использованием терминирующих аналогов нуклеотидов;
- 1981 - разрешен к применению в США первый диагностический набор моноклональных антител;
1982 - поступил в продажу человеческий инсулин, продуцируемый клетками кишечной палочки; разрешена к применению в Европейских странах вакцина для животных, полученная по технологии рекомбинантных ДНК; разработаны генно-инженерные интерфероны, фактор некротизации опухоли, интер-лейкин-2, соматотропный гормон человека и др;
-1986 - К. Мюллис разработал метод полимеразной цепной реакции (ПЦР);
- 1988 - началось широкомасштабное производство оборудования и диагностических наборов для ПЦР;
- 1997 - клонировано первое млекопитающее (овечка Долли) из дифференцированной соматической клетки.
Такие выдающиеся отечественные ученые как Л.С. Ценковский, С.Н. Вышелесский, М.В. Лихачев, Н.Н. Гинзбург, С.Г. Колесов, Я.Р. Коляков, Р.В. Петров, В.В. Кафаров и др. внесли неоценимый вклад в развитие биотехнологии.
Наиболее важные достижения биотехнологии в 4-ом периоде:
1. Разработка интенсивных процессов (вместо экстенсивных) на основе направленных, фундаментальных исследований (с продуцентами антибиотиков, ферментов, аминокислот, витаминов).
2. Получение суперпродуцентов.
3. Создание различных продуктов, необходимых человеку, на основе генноинженерных технологий.
4. Создание необычных организмов, ранее не существовавших в природе.
5. Разработка и внедрение в практику специальной аппаратуры биотехнологических систем.
6. Автоматизация и компьютеризация биотехнологических производственных процессов при максимальном использовании сырья и минимальном потреблении энергии.
Вышеперечисленные достижения биотехнологии реализуются в настоящее время в народное хозяйство и будут внедряться в практику в последующие 10-15 лет. В обозримом будущем будут определены новые краеугольные камни биотехнологии и нас ждут новые открытия и достижения.
1.3. Биосистемы, объекты и методы в биотехнологии
Одним из терминов в биотехнологии является понятие «биосистемы». Обобщенные характеристики биологической (живой) системы могут быть сведены к трём присущим им основным признаками:
1. Живые системы являются гетерогенными открытыми системами, которые обмениваются с окружающей средой веществами и энергией.
2. Эти системы являются самоуправляемыми, саморегулирующими, идактивными, т.е. способными к обмену информацией с окружающей средой для поддержания своей структуры и управления процессами метаболизма.
3. Живые системы являются самовоспроизводящимися (клетки, организмы).
По структуре биосистемы делятся на элементы (подсистемы), связанные между собой, и характеризуются сложной организацией (атомы, молекулы, органеллы, клетки, организмы, популяции, сообщества).
Управление в клетке представляет собой сочетание процессов синтеза молекул белков-ферментов, необходимых для осуществления той или иной функции, и непрерывных процессов изменения активности в ходе взаимодействия триплетных кодов ДНК в ядре и макромолекул в рибосомах. Усиление и торможение ферментативной активности происходит в зависимости от количества начальных и конечных продуктов соответствующих биохимических реакций. Благодаря этой сложной организации биосистемы отличаются от всех неживых объектов.
Поведение биосистемы является совокупностью ее реакций в ответ на внешние воздействия, т.е. наиболее общей задачей управляющих систем живых организмов является сохранение его энергетической основы при изменяющихся условиях внешней среды.
Н.М. Амосов делит все биосистемы на пять иерархических уровней сложности: одноклеточные организмы, многоклеточные организмы, популяции, биогеоценоз и биосферу.
Одноклеточные организмы - это вирусы, бактерии и простейшие. Функции одноклеточных - обмен веществом и энергией со средой, рост и деление, реакции на внешние раздражители в виде изменения обмена и формы движения. Все функции одноклеточных поддерживаются за счет биохимических процессов ферментативной природы и за счет энергетического обмена - начиная от способа получения энергии и до синтеза новых структур или расщепления существующих. Единственным механизмом одноклеточных, обеспечивающим их приспособление к окружающей среде, является механизм изменений в отдельных генах ДНК и, как следствие, изменение белков-ферментов и изменение биохимических реакций.
Основой системного подхода к анализу структур биосистем является ее представление в виде двух компонентов - энергетической и управляющей.
На рис. 1. показана обобщенная принципиальная схема потоков энергии и информации в любой биосистеме. Основным, элементом является энергетическая составляющая, обозначенная через МС (метаболическая система), и управляющая, обозначенная через Р (генетическое и физиологическое управление) и передающая сигналы управления на эффекторы (Э). Одной из главных функций метаболической системы является снабжение биосистем энергией.
Рис. 1. Потоки энергии и информации в биосистеме.
Структура биосистем поддерживается механизмами генетического управления. Получая от остальных систем энергию и информацию в виде продуктов обмена веществ (матаболитов), а в период формирования - в виде гормонов, генетическая система управляет процессом синтеза необходимых веществ и поддерживает жизнедеятельность остальных систем организма, причем процессы в этой системе протекают достаточно медленно.
Несмотря на многообразие биосистем, отношения между их биологическими свойствами остаются инвариантными для всех организмов. В сложной системе возможности к адаптации значительно больше, чем в простой. В простой системе эти функции обеспечиваются малым количеством механизмов, при этом они более чувствительны к изменениям во внешней среде.
Для биосистем характерна качественная неоднородность, проявляющаяся в том, что в рамках одной и той же функциональной биосистемы совместно и слаженно работают подсистемы с качественно различными адекватными управляющими сигналами (химическими, физическими, информационными).
Иерархичность биосистем проявляется в постепенном усложнении функции на одном уровне иерархии и скачкообразном переходе к качественно другой функции на следующем уровне иерархии, а также в специфическом построении различных биосистем, их анализа и управления в такой последовательности, что итоговая выходная функция нижележащего уровня иерархии входит в качестве элемента в вышележащий уровень.
Постоянное приспособление к среде и эволюция невозможны без единства двух противоположных свойств: структурно-функциональной организованности и структурно-функциональной вероятности, стохастичности и изменчивости.
Структурно-функциональная организованность проявляется на всех уровнях биосистем и характеризуется высокой устойчивостью биологического вида и его формы. На уровне макромолекул это свойство обеспечивается репликацией макромолекул, на уровне клетки -делением, на уровне особи и популяции - воспроизведением особей путем размножения.
В качестве биологических объектов или систем, которые использует биотехнология, прежде всего необходимо назвать одноклеточные микроорганизмы, а также животные и растительные клетки. Выбор этих объектов обусловлен следующими моментами:
1. Клетки являются своего рода «биофабриками», вырабатывающими в процессе жизнедеятельности разнообразные ценные продукты: белки, жиры, углеводы, витамины, нуклеиновые кислоты, аминокислоты, антибиотики, гормоны, антитела, антигены, ферменты, спирты и пр. Многие из этих продуктов, крайне необходимые в жизни человека, пока недоступны для получения «небиотехнологическими» способами из-за дефицитности или высокой стоимости сырья или же сложности технологических процессов;
2. Клетки чрезвычайно быстро воспроизводятся. Так, бактериальная клетка делится через каждые 20 - 60 мин, дрожжевая – через каждые 1,5 - 2 ч, животная - через 24 ч, что позволяет за относительно короткое время искусственно нарастить на сравнительно дешёвых и недефицитных питательных средах в промышленных масштабах огромные количества биомассы микробных, животных или растительных клеток. Например, в биореакторе ёмкостью 100 м3 за 2 – 3 сут можно вырастить 10'6- 1018 микробных клеток. В процессе жизнедеятельности клеток при их выращивании в среду поступает большое количество ценных продуктов, а сами клетки представляют собой кладовые этих продуктов;
Страницы: 1, 2, 3, 4