P – напряжение;
а и b – константы, которые можно получить как из кривой сила- скорость, так и в результате биометрических измерений;
г) кривая активного состояния является результатом механизма, в котором контрактильный компонент включается и выключается в ответ на изменение потенциалов в клетках мембран. Мышечная сила человека при прочих равных условиях пропорциональна площади физиологического поперечника мышцы. Это еще отметил немецкий физиолог Е. Вебер (1846). Известно, что 1 см. мышцы поднимает от 6 – 10 кг. безотносительно к тому, тренирован или не тренирован ее обладатель.
Зависимость мышечной силы от физиологического поперечника мышцы признают все специалисты в области анатомии и физиологии. В то же время в работах по физиологии отмечается, что важнейшим фактором проявления силы является не периферическое изменение, а регуляция работы мышц со стороны нервных центров.
Важным моментом для понимания механизма мышечного напряжения является то, что по мере роста проявления мышечной силы частота колебания потенциала одной двигательной единицы может возрасти с 5 – 6 до 35 – 40 раз в секунду. Однако поскольку предельная частота колебаний намного меньше частоты, при которой мышца начинает трансформировать ритм поступающих в нее импульсов, можно полностью согласиться с мнением В.М. Зациорского о том, что деятельность мышцы не связана с трансформацией ритма, как это предполагали ранее. Исследования показали, что частота импульсов линейно пропорциональна развиваемой кинетической энергии. Что же касается амплитуды токов действия одного миоцита, то она, как правило, не изменяется.
Только при различии пороговых значений амплитуда токов действия может увеличиться из-за неодновременного включения в работу отдельных волокон. Что касается электроактивности всей напрягаемой мышцы, то она также возрастает по мере роста величины ее напряжения, но до определенного предела.
При мышечных напряжениях, когда они не доходят до предельных величин, регуляция мышечной силы происходит за счет изменения различного количества двигательных единиц.
В основе регуляции двигательных единиц в этом случае лежит механизм асинхронности. По данным русского ученого Р.С. Персон, асинхронизация определяется проприоцептивным влиянием, которое накладывается на синхронную импульсацию центральных и моторных структур. При этом степень напряжения не регулируется потенциалом отдельных импульсов, поскольку первое волокно является проводником импульсов, характеризующихся постоянной величиной потенциала. В результате создаются условия для получения большей надежности при значительной пропускной способности накала и принципиальной простоте, что позволяет обеспечивать передачу возбуждения в широком диапазоне при относительно небольшом применении частоты импульсации.
Величина проявления силы при выполнении физических упражнений во многом зависит от формирования условных рефлексов, которые обеспечивают необходимую концентрацию процессов возбуждения и торможения и вовлечение в однократное максимальное сокращение наибольшего числа двигательных единиц (Д.Е.) при оптимальном возбуждении мышцах-антагонистах.
В напряжении мышцы, как полагает целый ряд исследователей, участвуют не все двигательные единицы. При этом чем сильнее возбуждение, тем большее число Д.Е. принимает участие в сокращении. Наибольшее проявление силы может быть достигнуто (если прочие условия равны) при одновременном сокращении максимально возможного количества всех двигательных единиц в мышце.
До настоящего времени неясным в механизмах регуляции мышечного напряжения является деятельность центрально-нервных механизмов. Исследования, выполненные в последние годы, дают возможность предполагать, что имеется по крайней мере три ведущих механизма. Один из них, в основе которого лежит рефлекс на растяжение (миотатический рефлекс), связан с регуляцией напряжения при сохранении положения тела. Изменение позы тела меняет и растяжение мышечных веретен, тем самым способствуя возбуждения их рецепторного аппарата, что в свою очередь рефлекторно вызывает изменение мышечного напряжения растянутых мышц.
При выполнении движений, не требующих проявления максимальной мышечной силы, для дозирования мышечного напряжения используется другой механизм. В этом случае высшие нервные центры определяют в основном необходимые величины пространственных, временных и скоростных параметров движения. Что касается нужных комбинаций мышечных напряжений, то он осуществляется более низко расположенными нервными отделами. Известно, что эффекторная импульсация поступает сначала не в мышечные волокна, а в мускульный аппарат мышечных веретен, что приводит к изменению натяжений в них и соответствующему возбуждению их рецепторного аппарата. Далее регуляция осуществляется по схеме миостатического рефлекса.
При выполнении движений, требующих предельных величин проявления мышечной силы, эффекторная импульсация поступает от соответствующих отделов головного мозга через мотонейроны прямо в Д.Е.
В экспериментальных исследованиях было показано, что предварительно растянутая до определенной оптимальной степени мышца сокращается сильнее и быстрее.
Следовательно, использование эластичных свойств мышцы также будет способствовать проявлению большой силы. В динамической анатомии такую работу мышц принято называть баллистической. И.М. Сеченов писал: «Груз действует на мышцы одновременно в двух противоположных направлениях – растягивает ее как всякое упругое тело, и усиливает в то же время развитие в ней сократительных осей».
Таким образом, с одной стороны, физиологи установили, что сила человека пропорциональна массе мышц, с другой стороны, биологи доказали, что с увеличением массы у представителей одного и того же класса животных, например млекопитающих, уменьшается относительная сила, то есть отношение абсолютной величины максимальной силы к весу тела.
1.4 Сущность и физические основы метода электромиографии
Электромиография как метод диагностики изучает, прежде всего, электрическую активность периферического аппарата нервной системы . При этом, в зависимости от целей исследования, оценивается как произвольная, так и вызванная путем стимуляции активность нейромышечного аппарата.
Физиологической основой ЭМГ, как и многих других методов функциональной диагностики, является изменение электрического потенциала биологических мембран, в данном случае - мембран мышечных волокон (MB), аксонов, входящих в состав смешанных периферических нервов, а также структур нервно-мышечного синапса.
Исходный уровень поляризации мембраны MB в состоянии покоя составляет около 60-90 мВ. Поддержание этой разности потенциалов происходит за счет энергии метаболизма мышечной клетки, которая обеспечивает функционирование калий-натриевого (K-Na) насоса, осуществляющего выведение ионов Na+ из клетки и транспорт ионов К+ в нее. Возникающая ионная асимметрия приводит к формированию потенциала мембраны нервной клетки.
Аналогичен механизм обеспечения потенциала покоя (ПП) мембраны аксона. Разность потенциалов между внутриклеточной жидкостью, заряженной отрицательно относительно внеклеточной среды, и экстра-целлюлярным пространством составляет 60-90 мВ.
Наличие ПП биологических мембран является условием их нормального функционирования и генерации электрической активности. При прекращении обмена веществ или грубом его угнетении ПП стремится к нулю. С этим связано угасание биоэлектрической активности в случае гибели тканей.
Рис. 2. Потенциал действия мембраны и динамика ионной проницаемости.
Исходно от уровня потенциала покоя (-90 мВ) начинается I-я фаза деполяризации, сменяющаяся на уровне нулевого (0 мВ) мембранного потенциала противоположным знаком овершутом (+ 40 мВ) и затем переходящая в II-ю фазу реполяризации по пути возвращения значений мембранного потенциала к потенциалу покоя. Отклонения от пути возвращения называют III-й фазой – следовым потенциалом:
а) положительным – при продолжающейся реполяризации.
б) отрицательный – при развитии деполяризации.
Основное участие в развитии фазы деполяризации принимает входящий в клетку поток положительных ионов натрия (Na+), перезаряжающих внутреннюю поверхность мембраны. На смену быстрой активации натриевой проницаемости пороговым раздражителем приходят процессы инактивации входа Na+ и активации выхода из клетки ионов калия (K+), что проявляется фазой реполяризации – возвращения зарядов на внутренней поверхности мембраны к отрицательным значениям (рис. 2).
При возбуждении нервной клетки, в частности мотонейрона, в наиболее возбудимом месте (аксональный холмик) возникает ПД, который распространяется вдоль аксона. Распространение нервного импульса по аксону происходит за счет последовательной деполяризации соседних участков мембраны с образованием ПД (Рис. 3) со скоростью около 0.5-5 м/с.
Рис. 3. Схема движения возбуждения по немиелиниазированному волокну
Данный механизм проведения характерен для немиелинизированного нервного волокна.
В миелинизированном нервном волокне аксон окружен особой оболочкой, называемой миелином. Миелин по своей структуре - мембранное образование, состоящее преимущественно из фосфолипидов и по электрическим свойствам являющееся диэлектриком. Удельное сопротивление миелина достигает величины 500-800 Мом/см2. Другой важной особенностью миелина является малая величина удельной емкости (0.0025-0.005 мкФ/см2). Функции миелиновых оболочек в периферических нервах и в нервных волокнах головного и спинного мозга разнообразны и до конца не изучены. Это изолирующая, опорная, барьерная, возможно, трофическая функция, участие в передаче импульсов.
На всем протяжении нервного волокна через определенные промежутки (около 1 мм) миелиновая оболочка имеет перерывы. Данные немиелинизированные участки называют перехватами Ранвье. Отмечено, что в перехватах Ранвье возбудимость мембраны выше и больше плотность K-Na насосов, чем на миелинизированных участках мембраны аксона. При прохождении возбуждения деполяризуется мембрана в зоне перехвата Ранвье и возникает потенциал действия, который по своей электрической природе является переменным током. Благодаря электрическим особенностям миелина, локальные токи возбуждения не выходят в межперехватном участке, а деполяризуют следующий перехват Ранвье. Таким образом, электрический импульс движется как бы "скачками" (сальтаторно) между перехватами или даже через 2-3 соседних перехвата (Рис. 4), поэтому скорость проведения импульса по этим волокнам значительно выше (15-120 м/с).
Рис. 4. Схема движения возбуждения по миелиниазированному волокну
Важным фактором, определяющим скорость проведения по миелинизированному волокну, является отношение амплитуды ПД к пороговой величине деполяризации мембраны перехвата Ранвье. Данное соотношение имеет величину порядка 7. Уменьшение этого фактора безопасности любыми воздействиями приводит к снижению скорости проведения.
В процессе биологической эволюции морфология нервных волокон оказалась хорошо приспособленной к оптимальному проведению по ним импульса. Морфометрические исследования выявили постоянство отношения длины межперехватного участка к диаметру нервного волокна. Для реальных волокон это соотношение оказалось 0.5-0.7. Данное свойство миелинизированных волокон у позвоночных позволяет сохранить оптимальные условия проведения ПД по волокнам разных диаметров.
Известно, что аксон, идущий от мотонейрона, при входе в мышцу делится на терминали соответственно количеству иннервируемых им мышечных волокон. При этом суммарный диаметр данных терминалей не превышает диаметр аксона. Для обеспечения проведения импульса по этим волокнам они теряют миелиновую оболочку.
Страницы: 1, 2, 3, 4, 5