I
Cl Cl
2,3,7,8-тетрахлордибензо-п-диоксин
II
2,3,7,8-тетрахлордибензофуран
Рис.8. Структурные формулы 2,3,7,8-ТХДД и 2,3,7,8-ТХДФ
Ситуация с полигалогенированными бифенилами аналогична. Однороднозамещённые ПХБ XII включают 209 гомологов и изомеров. Столько же соединений входят в ряд полибромбифенилов (ПББ), а также в ряды однороднозамещённых галогенированных азобензолов XIII и их азоксианалогов XIV. Число гомологов и изомеров в ряду галогенированных нафталинов XXIII совпадает с таковым в собственно диоксинах.
В таблице 1 для полноты картины включены также данные о соединениях IX-XI. В принципе ксантены и ксантоны не имеют пока серьёзного значения для природных процессов, тогда как бифенилены могут окисляться до более традиционных ксенобиотиков ПХДД и ПХДФ. Однако и эти классы веществ в последние десятилетия стали объектом рассмотрения как возможные компоненты микровыбросов современных технологий. Однако вопрос о присутствии в микровыбросах новых сложных галогенированных ароматических соединений остаётся предметом обсуждения.
Особо опасными для человека и природы являются главным образом тетра-, пента-, гепта- и октазамещённые диоксины, содержащие атомы галогенов в латеральных положениях 2,3,7,8. В ряду полигалогенированных дибензо-п-диоксинов III, V и VII их всего 351, а в ряду полигалогенированных дибензофуранов IV, VI и VIII число гомологов и изомеров возрастает до 667. И хотя далеко не все из этих 1018 наиболее опасных веществ фактически попадают в сферу человеческого обитания, одни лишь количества свидетельствуют о масштабах трудностей, возникающих в связи с необходимостью идентификации и определения в различных объектах живой и неживой природы наиболее опасных десятков и сотен диоксинов среди тысяч им подобных веществ.
Структурное многообразие диоксиновых ксенобиотиков создаёт определённые трудности в их систематике. В связи с этим сделана попытка упростить проблему путем нумерации веществ каждого ряда. Так, при работе с ПХБ введено цифровое обозначение каждого из гомологов и изомеров. На рис.9 приведены три наиболее токсичных соединения этого ряда и их обозначение в системе IUPAC.
Cl Cl IUPAC 77
Cl
Cl Cl IUPAC 126
Cl Cl IUPAC 169
Рис.9. Структурные формулы и обозначения в системе
IUPAC трёх наиболее токсичных соединений ПХБ
Дополнительные трудности могут быть обусловлены наличием в микровыбросах существующих технологий функционально замещённых диоксинов, содержащих вместо атома галогена группы NO2, NH2, Alk и др. В ряде случаев оказалось, что это – высокоопасные вещества. Среди них встречаются, однако, и конкурентные антагонисты высокотоксичных диоксинов, снижающие эффект последних. Это также может привести к увеличению объёмов аналитических работ, их усложнению из-за расширения фона и ограничений на использование биологических методов анализа.
2.Источники диоксинов
Источники возникновения и пути проникновения их в живую и неживую природу весьма разнообразны.
Серьезных доказательств накопления каких-либо существенных количеств этих ксенобиотиков в донных отложениях рек и озёр, образовавшихся до 1940 г., т.е. до начала масштабного производства гербицидов на основе феноксиуксусных кислот, не найдено. Не обнаружено и серьёзных доказательств биогенного образования диоксинов III-VI или их предшественников непосредственно в живой природе.
В настоящее время считается строго доказанным, что диоксины имеют исключительно техногенное происхождение, хотя и не являются целью ни одной из существующих технологий. Их появление в окружающей среде обусловлено развитием разнообразных технологий, главным образом в послевоенный период, и в основном связано с производством и использованием хлорорганических соединений и утилизацией их отходов. Во всяком случае, ни в тканях эскимосов, замёрзших 400 лет назад, ни в тканях чилийских индейцев, мумифицированных 2800 лет назад, диоксины не обнаружены даже в следовых количествах.
По хозяйственно-территориальным признакам источники удобно подразделять на локальные и диффузионные (пространственно распределённые), а по темпам накопления в окружающей среде и объектах живой природы – на регулярные и экстремально-залповые.
Источники способствующие основным поступлениям диоксинов в живую и неживую природу можно разделить на три группы:
2.1. Получение продукции
Диоксины образуются при функционировании экологически небезопасных, несовершенных технологий производства продукции химической, целлюлозно-бумажной, металлургической и иной промышленности. Для всех них характерны диоксинсодержащие отходы и сточные воды в период регулярной деятельности, а также большие дополнительные выбросы диоксинов в случае аварийной обстановки.
Ксенобиотики диоксинового ряда образуются при производственных процессах, целью которых является получение ароматических и алифатических хлор- и броморганических соединений, неорганических галогенидов. Образуются они и при выпуске иных химических продуктов с промежуточным использованием хлора, неорганических галогенидов, хлор- и броморганических соединений, в том числе в качестве катализаторов и растворителей.
В научных работах систематизированы лишь некоторые виды промышленных технологий, в процессе которых возможно попутное генерирование диоксиновых соединений – ПХДД и ПХДФ:
· Процессы производства хлорфенолов и их производных;
· Процессы производства хлорбензолов, ПХБ и их замещённых;
· Синтез хлоралифатических соединений;
· Процессы производства бромированных антипиренов (бифенилы, дифениловые эфиры и т.д.);
· Процессы с использованием хлорсодержащих интермедиатов;
· Процессы производства неорганических хлоридов;
· Процессы с использованием хлорированных катализаторов и растворителей, и т.д.
То же самое может относиться к некоторым процессам броморганической химии.
Значительное количество диоксинов образуется в целлюлозно-бумажной промышленности. При производстве целлюлозы древесную массу хлорируют, чтобы освободить её от лигнина. Это способствует присутствию диоксинов в бумаге, которую используют, кроме всего прочего, для упаковки продуктов питания.
В последние годы выявлена новая группа локальных источников диоксинов. Как оказалось, они образуются на металлургических заводах, при электрохимическом получении никеля и магния из их хлоридов, в сталелитейных производствах, при переплаве лома железа, меди и других металлов, при производстве алюминия и т.д.
При получении стали в мартеновских печах металлолом не отделяют от мусора, пластика и другой органики, что тоже приводит к образованию диоксинов.
Примеси ПХДД и ПХДФ были обнаружены в выбросах нефтеочистных сооружений.
В 1997 г. Госкомэкологией Российской Федерации было завершено выполнение федеральной целевой программы «Диоксин», в рамках которой выявлено в 92 городах наличие 152 основных диоксиноопасных производств.
По числу диоксиновых агрессоров Самарская область занимает одно из первых мест в России – на её территории расположено 8 предприятий с диоксиновыми технологиями. С конца 60-х годов на одном из них – Чапаевском заводе химических удобрений – был организован технологический процесс переработки изомеров гексахлорана с получением трихлорбензола, гексахлорбензола и пентахлорфенолята натрия, который сопровождался образованием высокотоксичного ТХДД. Освоение выпуска этих продуктов затянулось на долгие годы и сопровождалось поражением персонала и населения окружающих районов г. Чапаевска, так как очистка готовой продукции от диоксинов и родственных соединений технологической схемой не предусматривалась. Санитарно-гигиенические условия труда были неудовлетворительными с превышением предельно допустимых концентраций по хлорированным углеводородам в 10 и более раз. Промышленные вредности распространялись за пределы производств в окружающую среду, воздействуя на жителей г. Чапаевска, который был объявлен зоной экологического бедствия.
2.2. Использование продукции
Использование химической и иной продукции, содержащей примеси диоксинов (или их предшественников) и/или образующей их в процессе использования или же в случае аварий, относят ко второй группе источников способствующих основным поступлениям диоксинов в живую и неживую природу.
Страницы: 1, 2, 3, 4, 5