Рефераты. Анатомия и физиология органа зрения

Анатомия и физиология органа зрения








                     










      Реферат на тему: Анатомия и физиология органа зрения.



















                                                                                                                    Выполнил: ст. 501 гр.                      

                                                                                                                       Захлевный А.И.














                                                            Кемерово 2006

Чтобы правильно понять природу того или иного заболе­вания, необходимо иметь представление об анатомии и физиоло­гии пораженного органа. В течение дол­гих лет строение человеческого тела и его органов возможно было постичь лишь путем посмертных исследований. Однако современ­ные технологии, например ядерно-магнитный резонанс (ЯМР), да­ют возможность прижизненного исследования тела человека. Анатомия изучает строение человека, в то время как физио­логия — функции отдельных органов и всего организма в целом. Под органом зрения понимают все структуры, участвующие в зрительном акте [Lat. visium: видимый], — от глаза до мозга . Зритель­ный акт заключается в восприятии света, но прежде всего необхо­димо понять саму природу света.

Свет. Для восприятия окружающего мира необходима осо-бая среда, которая называется "свет". Мы видим звезды только по­тому, что они излучают свет, который в конечном итоге попадает в глаз. Яблоко на столе воспринимается органом зрения потому, что рассеивает и частично отражает свет другим образом, чем стол.

Но что такое свет? Несмотря на то что свет представляет со­бой нечто естественное и весьма распространенное, его природу объяснить не так просто. С физической точки зрения свет — это электромагнитные волны. Эти волны содержат энер­гию. Чем выше частота волны или чем короче ее длина, тем выше переносимая этой волной энергия. Диапазон частот в пределах электромагнитной области бесконечно широк.

Гамма-лучи Рентгеновские лучи

Ультрафиолетовые лучи /

Видимый свет 1 мм Инфракрасное излучение

Микроволны Короткие радиоволны Телевидение и FM-радио AM-радиоволны

Длинные радиоволны

Из широкого спектра волн только небольшая часть воспри­нимается глазом и распознается мозгом как свет. В пре­делах столь ограниченного набора волн человеческий глаз способен различать самые разнообразные волновые частоты. Эти различия и создают восприятие разных цветов и оттенков.

Свет свободно проходит через некоторые физические тела, например такие, как стекло и вода, которые прозрачны. В отличие от них, объект черного цвета является таковым потому, что либо целиком, либо частично поглощает свет. Это также объясняет, почему объекты черного цвета, поглощая свет, сильно нагревают­ся — поглощенная энергия преобразуется в высокую температуру. Большинство из окружающих нас предметов не поглощает лучи всех длин волн подобно объектам черного цвета. Например, крас­ное яблоко поглощает лучи тех длин волн, которые больше, чем длина волны красного цвета: лучи именно этой длины волны отра­жаются и рассеиваются, а не поглощаются, что и создает восприя­тие красного цвета. Если отражающая свет поверхность гладкая или полированная, она действует как зеркало.

В пустом пространстве световые волны распространяются со "скоростью света". Эта скорость уменьшается в среде, имеющей не­которую плотность. Когда свет входит в более плотную среду, на­пример стекло, он преломляется. В этом состоит основной оптиче­ский эффект линз.

Что такое зрительный акт? Система органа зрения устрое­на настолько совершенно и функционирует так естественно, что трудно представить себе, какие сложные процессы лежат в основе зрительного акта. Рассмотрим эти процессы на конкретном приме­ре, Представьте себе, что вы находитесь в компании друзей и рас­сматриваете старый альбом с фотографиями. И вот на одной из них вы узнаете своего школьного друга, с которым не виделись много лет. Если задуматься, как вы могли узнать его?

Прежде всего, свет должен попасть на фотографию, рассеи­ваясь и отражаясь от нее в различных направлениях. Лишь неболь­шая часть этого света попадает в глаз. Оптическая система глаза со­здает зрительный образ на сетчатке. Однако для того чтобы он был четким и образ вашего одноклассника был ясно различим, необхо­димо, чтобы изображение фокусировалось на той зоне сетчатки, ко­торая отвечает за наиболее высокую остроту' зрения, т. е. в маку-лярной области. Это возможно не только благодаря нормальной работе оптической системы глаза, но также благодаря сочетанному движению самих глазных яблок.

В молодом возрасте ясное и четкое изображение на сетчат­ке формируется благодаря аккомодационной функции хрусталика, который, изменяя свою кривизну (становясь то более выпуклым, то более плоским), позволяет фокусировать изображение в макуляр-ной области. Далее зрительный образ должен быть преобразован в нервные импульсы, которые передаются в кору головного мозга, где и происходит анализ полученной зрительной информации. Объект, рассматриваемый при солнечном освещении или в свете электрической лампочки, различен как по яркости формируемого зрительного образа, так и по цветовой гамме. Однако в сетчатке эти различия нивелируются, и в головном мозге создается одина­ковый зрительный образ. Информация передается в первичные, а затем во вторичные зрительные центры коры головного мозга. Здесь происходит анализ и синтез поступающей информации, точ­нее, всех ее составляющих, а именно: расстояния, направления дви­жения, яркости и интенсивности света, различий в цветах и т.д.

Каким образом вы узнали вашего одноклассника при рас­сматривании фотоальбома? Дело в том, что ваш мозг сравнивает все образы лиц на фотографиях с теми, что уже имеются в его па­мяти. Таким образом, в процессе зрительного акта должна участво­вать еще и зрительная память.

Этот пример демонстрирует, насколько комплексно и четко работает зрительная система. Понять это можно лишь тогда, когда что-то в этой системе нарушается.

Прежде чем рассматривать физиологические аспекты работы зрительной системы, необходимо остановиться на некоторых ана­томических моментах.

Глазное яблоко. Когда мы говорим "глаз," большинство представляет себе ту его часть, которая видна, т. е. веки и часть глаз­ного яблока (рис. 1.6). Но чаще под "глазом" подразумевается са­мо глазное яблоко или "bulbus (bulbus oculi)" [Lat. bulbus: лукови-ца/Lat: oculus: глаз].

Большая часть глазного яблока закрыта веками.

Глазное яблоко располагается в глазнице. Если посмотреть на поперечный срез глаза, то видно, что он имеет сферическую форму (рис. 1.7).

Такая форма глаза позволяет лучше фокусироваться свето­вым лучам на сетчатке, а также способствует более свободному дви­жению глазного яблока, обеспечивая наилучшую фокусировку.

Для того чтобы изображение фокусировалось на сетчатке, необходимы преломляющие структуры, которые должны быть про­зрачными, т. е. не содержать кровеносных сосудов. Пер­вая преломляющая структура — роговая оболочка.

Рис. 1.6. Рис. 1.7.

В лимбе роговая оболочка переходит в склеру [Gr. skleros: же­сткий, твердый]. Роговая оболочка и склера являются относительно плотными тканями и формируют своего рода опорную капсулу глаза.

Позади роговой оболочки находится передняя камера, запол­ненная водянистой влагой.

Следующая анатомическая структура — радужка [Gr. iris: ра­дуга], она выполняет роль диафрагмы глаза.

Мышцы радужки, сокращаясь и расслабляясь, регулируют размер зрачка [Lat. pupa: марионетка, кукла]. Это название появи­лось потому, что если смотреть прямо б глаза другому человеку, то видишь свое отражение уменьшенным.

Позади радужки находится хрусталик [Lat. lens: линза/Gr. phakos: линза], который, подобно роговице, прелом­ляет световые лучи. Хрусталик крепится к ресничному телу миниа­тюрными цинновыми связками. Ресничное тело содержит цирку­лярную мышцу. При сокращении последней цинновы связки рас­слабляются и хрусталик приобретает выпуклую форму. Это увели­чивает преломление световых лучей и называется аккомодацией [Lat. accommodatio: регулирование].

Аккомодация — способность глаза видеть на разном рассто­янии. Она постепенно уменьшается с возрастом, и обычно между 40—45 годами большинство людей ощущают потребность в очках. Возрастная потеря аккомодации называется пресбиопией [Gr. preshys: старый / Gr. opsein: видеть].

Позади радужки и хрусталика находятся небольшая задняя камера глаза и значительно большее в размерах стекловидное тело.

Стекловидное тело состоит из вязкой, прозрачной, студенис­той массы и поддерживающих волокон. С возрастом в стекловид­ном теле могут развиться небольшие помутнения, отбрасывающие тень на сетчатку. Они воспринимаются как летающие мушки. В процессе старения (особен­но в близоруких глазах) стекловидное тело иногда уменьшается в размерах и отходит от сетчатки. Этот процесс протекает в норме, не неся никаких осложнений. Однако если между стекловидным те­лом и сетчаткой имеются спайки, то в процессе сокращения стек­ловидного тела в сетчатке могут образовываться разрывы, приводя­щие к ее отслойке.

Рис.  1.8. Роговая оболочка (обозна­чена голубым цветом) переходит в склеру (серый цвет)

Рис.  1.9. Гистологический срез рого­вой оболочки с ее многослойной струк­турой

Рис.  1.10. Передняя камера (обозна-чена темно-синим цветом) и задняя камера (светло-голубой цвет), запол­ненные водянистой влагой

Рис.  1.11. Радужка (обозначена крас­ным цветом)

Рис. 1.12. Хрусталик (обозначен го-    Рис. 1.13. Стекловидное тело (обо-лубым цветом)                                                                                                                                                                                                                                                                                            значено серым цветом)


Самая внутренняя оболочка глаза — сетчатка [Lat. retc: сеть], высокочувствительная структура, состоящая из не­скольких различных слоев.

Позади сетчатки находится пигментный эпителий, который, как это следует из названия, содержит много пигмента, меланина. Меланин поглощает свет. При недостатке меланина (состояние, называемое альбиниз­мом) становятся хорошо различимыми сосуды хориоидеи.

Помимо поглощения света пигментный эпителий выполня­ет ряд других функций, относящихся к питанию сетчатки. Позади пигментого эпителия лежит сосудистая оболочка, или хориоидея, со­стоящая, прежде всего, из кровеносных сосудов [Gr. chorioidea: по­добный хориону / Gr. chorion: плацента]. Радужная оболочка, ресничное тело и сосудистая оболочка вместе формируют увеальный тракт [Lat. uvea: виноград]. В разре­зе хориоидея действительно напоминает кожицу темно-красного винограда. Интенсивное кровообращение в сосудистой оболочке обеспечивает питание сетчатки, а также поддерживает в ней постоянную температуру.

Преобразование света в зрительный образ. Нейрорецепто-ры сетчатки содержат фоточувствительное вещество ретиналб. Когда ретиналь поглощает фотон (единицу света), его форма изменяется (рис. Д 1.24).

Когда сигнал поступает к окружающим молекулам, происхо­дят реакции, которые заканчиваются закрытием внутриклеточных ионных каналов [Gr. ion: движение]. Это, в свою очередь, изменя­ет потенциал мембраны клетки и преобразовывает поступающую информацию в нервный импульс (рис. Д 1.25). Процесс превраще­ния света в нервный импульс называется фототрансдукцией.

Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.