a) ; b) ; c) ; d)
Решение:
a) =(3, 2, 1, 24);
Находим подходящие дроби:
3
2
1
24
7
10
247
0
74
=; =; =
b) =(3, 3, 33);
33
333
100
=; =
c) ==(3, 7, 15, 1, 292);
15
292
22
355
103993
106
113
33102
=; =; =; =;
d) =(0, 2, 2, 3);
5
17
=; =; =.
3. Сократить дробь
a); b); c)
Решение: a);
Разложим ее в конечную цепную дробь и найдем последнюю подходящую дробь для нее.
=(4, 1, 1, 6)
=; =; =; =
Дробь несократима и =.
b)=(0, 3, 3, 1, 6, 1, 3, 2)
; =; =; =; =; =; =; =
Дробь несократима =.
c)=(1, 1, 2, 2, 32)
; =; =; =; = - несократима =.
4. Найдите первые четыре подходящие дроби разложения в цепную дробь числа =3,14159265…
; =; =; =
Ответ: ; ; ; .
5. Преобразуйте в обыкновенную дробь следующие цепные дроби: a) (2, 1, 1, 2, 1, 6, 2, 5); b) (2, 3, 1, 6, 4); c) (1, 3, 2, 4, 3, 1, 1, 1, 5);
d) (0, 3, 1, 2, 7).
Решение: a) (2, 1, 1, 2, 1, 6, 2, 5)=
Составим таблицу подходящих дробей:
6
13
18
121
260
1421
47
101
552
Ответ: =
b) (2, 3, 1, 6, 4)=
4
9
61
253
27
112
c) (1, 3, 2, 4, 3, 1, 1, 1, 5)
40
129
169
298
467
2633
31
131
231
362
2041
d) (0, 3, 1, 2, 7)=
11
81
6. Разложить в цепную дробь и заменить подходящей дробью с точностью до 0,001 следующие числа:
a) ; b) ; c) ; d) .
Решение: a) =. Выделим из его целую часть: , а дробную часть -2, которая <1, представим в виде , где . Повторяя эту операцию выделения целой части и переворачивания дробной, получаем:
;
.
Мы получили, что , следовательно, неполные частные, начиная с будут повторяться и =(2, (4)).
…
38
72
Нам необходимо найти такую подходящую дробь , чтобы . Очевидно, что это , так как 17·72>1000.
Ответ: .
b) =; =5
Мы получили неполные частные, начиная с будут повторяться и =(5, (1, 1, 1, 10)).
181
198
32
35
, так как 32·35>1000. Ответ: .
c) =(3, 2, 5, 2, 7, 2);
83
619
1321
179
382
, так как 24·179>1000.
d) =; =1
=((1, 2))
41
56
153
8
30
102
, так как 30·41>1000.
7. Найти действительные числа, которые обращаются в данные цепные дроби:
a) (4, (3, 2, 1)); b) ((2, 1))
a) (4, (3, 2, 1)) - смешанная периодическая дробь.
, то есть , где
x=((3, 2, 1)) - чисто периодическая цепная дробь. Так как выражение, начинающееся с четвертого неполного частного 3, имеет тот же вид:
, то мы можем записать x=(3, 2, 1, x)= =, после чего приходим к квадратному уравнению относительно x:
D=64+12·7=148 .
Положительное решение и есть x. . Найдем .
=4+=
b) ((2, 1))=
=(2, 1, )
Сейчас мы можем найти таким же путем, как и в задаче a), но можно решить задачу легче. Составим таблицу подходящих дробей:
3+2
+1
=
D=4+4·2=12
Положительное решение и есть искомое .
8. Решить в целых числах уравнения:
a) 143x+169y=5; b) 2x+5y=7; c) 23x+49y=53.
a) 143x+169y=5 - диофантово уравнение.
(143, 169)=13(НОД находим с помощью алгоритма Евклида)
уравнение решений не имеет.
b) 2x+5y=7
(2, 5)=1 уравнение имеет решение в целых числах.
Разложим в цепную дробь. =(0, 2, 2). Составим все подходящие дроби. ; ;
На основании свойства подходящих дробей получим
2·2-1·5 =(-1)3 или 2·2+5(-1)=-1
2·(-14)+5·7=7, то есть – частное решение.
Все решения могут быть найдены по формулам
или
c) 23x+49y=53
(23, 49)=1 существуют целые решения.
=(0, 2, 7, 1, 2)
, , , ,
17·23-8·49=(-1)5
23·17+49·(-8)=-1
23·(-901)+49·424=53
9. Разложите число 150 на два положительных слагаемых, одно из которых кратно 11, а второе – 17.
Решение: Пусть 11x – первое число 11x>0 x>0;17y - второе число 17y>0 y>0.
Тогда 11x+17y=150
(11, 17)=1существуют решения.
(11, 17)=(0, 1, 1, 1, 5)
11·3-2·17=(-1)5=–1
11·3+17·(-2)=-1
11·(-450)+17·300=150
x=-450+27·17=999 - первое число
y=300-11·27=351 - второе число.
Ответ: 99; 51.
10. Решить уравнения Пелля:
a) b)
a)
Представим в виде цепной дроби:
=(5, (10)).
Количество чисел в периоде нечетное (одна) =(5; 10)=.
- наименьшее положительное решение.
Ответ: x=51, y=10.
b)
=(4, (2, 1, 3, 1, 2, 8))
Количество чисел в периоде четное (шесть)
48
170
14
39
Ответ: x=170, y=39.
Данная курсовая работа показывает значение цепных дробей в математике.
Их можно успешно применить к решению неопределенных уравнений вида ax+by=c. Основная трудность при решении таких уравнений состоит в том, чтобы найти какое-нибудь его частное решение. Так вот, с помощью цепных дробей можно указать алгоритм для разыскания такого частного решения.
Цепные дроби можно применить и к решению более сложных неопределенных уравнений, например, так называемого уравнения Пелля:
().
Бесконечные цепные дроби могут быть использованы для решения алгебраических и трансцендентных уравнений, для быстрого вычисления значений отдельных функций.
В настоящее время цепные дроби находят все большее применение в вычислительной технике, ибо позволяют строить эффективные алгоритмы для решения ряда задач на ЭВМ.
Страницы: 1, 2