Рефераты. Реферат: Математический анализ

Реферат: Математический анализ

ГЛАВА#1.МАТЕМАТИЧЕСКИЙ АНАЛИЗ.

§1 ПОНЯТИЕ ОКРЕСТНОСТИ,БЕСКОНЕЧНО МАЛОГО,ПРЕДЕЛА,

НЕПРЕРЫВНОСТИ ФУНКЦИИ.

ОКРЕСТНОСТЬЮ ТОЧКИ Хо называется любой интервал,содержащий

эту точку.

ПРОКОЛОТОЙ ОКРЕСТНОСТЬЮ т.Хо называется окрестность т.Хо,

из которой выброшена сама точка.

ОКРЕСТНОСТЬЮ "+" БЕСКОНЕЧНОСТИ называется любой полу-

бесконечный промежуток вида (а;+ ).

ОКРЕСТНОСТЬЮ "-" БЕСКОНЕЧНОСТИ называется любой полу-

бесконечный промежуток вида (- ;b).

ОКРЕСТНОСТЬЮ БЕСКОНЕЧНОСТИ называется объединение двух

любых окрестностей + и - .

Функция f(х) называется бесконечно малой в окрестности

т.Хо,если для любого числа >0 существует проколотая

окр. т.Хо такая,что для любого числа Х,принадлежащего

прокол.окр.т.Хо выполняется неравенство ¦f(х)¦< .

>0 U U => ¦f(x)¦<

Число А называется пределом ф-ции f(х) в т.Хо,если

в некоторой прок.окр. этой точки ф-цию f(х) можно

представить в виде f(х)=А+ (х),где (х)-бесконечно

малое в окрестности т.Хо.

limf(x)=А

Ф-ция f(х) называется непрерывной в т.Хо,если в некоторой

окр.т.Хо эту ф-цию можно представить в виде:f(х)=f(х )+ (х),

где (х)-б.м. в окр.т.Хо.

Иными словами,f(х)-непрерывна в т.Хо,если она в этой точке

имеет предел и он равен значению ф-ции.

ТЕОРЕМА:Все элементарные ф-ции непрерывны в каждой точке

области определения.

Схема:1.ф-я элементарна

2. определена

3. непрерывна

4. предел равен значению ф-ции

5. значение ф-ции равно 0

6. можно представить в виде б.м.

СВОЙСТВА БЕСКОНЕЧНО МАЛЫХ:

Теорема#1:Единственная константа,явл-ся б.м.-0

Теорема#2:Если (х) и (х) -б.м. в окр.т.Хо,то их

сумма тоже б.м. в этой окр.

Ф-ция f(х) называется ограниченной в окр.т.Хо,если сущ.

проколотая окр.т.Хо и сущ. число М>0,такие что ¦f(х)¦<М

в каждой точке прок.окр.т.Хо.

U M>0: ¦f(x)¦<M x U

Теорема#3:Если (х) -б.м. в окр.т.Хо,то она ограничена

в этой окр.

Теорема#4:О произведении б.м. на ограниченную:

Если ф-ция (х) -б.м.,а f(х) -ограниченная в окр.т.Хо,то

(х)*f(х) -б.м. в окр.т.Хо.

Теорема#5:О промежуточной б.м.:

Если (х) и (х) -б.м. в окр.т.Хо и (х)< (х)< (х)

в окр.т.Хо U ,то (х) -б.м. в окр.т.Хо.

Две б.м. называются сравнимыми,если существует предел их

отношения.

Б.м. (х) и (х) в окр.т.Хо называются одного порядка,

если предел их отношений есть число не равное 0.

Две б.м. в окр.т.Хо называются эквивалентными,если

предел их отношения равен 1.

Теорема#1:Если и -эквивалентные б.м.,то их разность

есть б.м. более высокого порядка,чем и чем .

Теорема#2:Если разность двух б.м. есть б.м. более высокого

порядка,чем и чем ,то и есть эквивалентные б.м.

Таблица основных эквивалентов б.м.:

Х0

sinх х

е-1 х

ln(1+х) х

(1+х) -1 х

Асимптотические представления:

Х0

sinx=x+0(x)

e =1+x+0(x)

ln(1+x)=х+0(x)

(1+x) =1+ x+0(x)

Св-во экв.б.м.:

Если (х) и (х) -экв.б.м. в окр.т.Хо,а (х) и (х) -экв.б.м.

в окр.т.Хо и сущ. lim =А,то тогда сущ. lim и он равен А.

§2 БЕСКОНЕЧНО МАЛЫЕ БОЛЕЕ ВЫСОКОГО ПОРЯДКА.

Если (х) и (х) -б.м. в окр.т.Хо и lim =0,то (х)

называется бесконечно малой более высокого порядка,чем

(х). (х)=о( (х)).

Замечание:Если (х)-более высокого порядка,чем (х),

то (х)=о(k (х)),k=0

Теорема БЕЗУ:Если -корень многочлена,то многночлен

делится без остатка на (х- ).

§3 ОСНОВНЫЕ СВ-ВА Ф-ЦИЙ,ИМЕЮЩИХ ПРЕДЕЛ.

ЛЕММА об оценке ф-ции,имеющей предел отличный от нуля:

Если предел ф-ции f(х) в т.Хо равен А и А>0,то

А/2<f(х)<3А/2 в некоторой проколотой окр.т.Хо.

Замечание:Если предел А<0,то 3А/2<f(х)<А/2.

ТЕОРЕМА#1.Необходимое условие ограничиности ф-ции,

имеющей предел:

Если ф-ция f(х) имеет в точке предел,то она ограничена

в окрестности этой точки.

ТЕОРЕМА#2.Арифметические операции над ф-циями,

имеющих предел.

Если f(х) и f(х) имеют предел в т.Хо:

lim f(х)=А

lim f(х)=B,то

тогда 1.сущ.предел их суммы и он равен сумме пределов.

2.сущ.предел их произведения и он равен

произведению пределов.

3.если В=0,то сущ.предел отношения и он равен

отношению пределов.

ТЕОРЕМЫ,СВЯЗАННЫЕ С НЕРАВЕНСТВАМИ:

Т.1:Если ф-ция f(х),имеющая предел в т.Хо,больше 0,

то f(х)>0 в прокол.окр.т.Хо.

Наоборот,если f(х),имеющая предел в т.Хо,меньше 0,

то f(х)<0 в прокол.окр.т.Хо.

Т.2:Если ф-ция f(х) имеет предел в т.Хо и f(х)>0 в

некоторой прокол.окр.т.Хо,то и предел f(х)>0 в т.Хо.

Т.3:Если ф-ции f(х) и f(х) имеют предел в т.Хо:

lim f(х)=А

lim f(х)=В и

f(х)<f(х) в некоторой прокол.окр.т.Хо,то и

пределы А<В.

Т.4 о пределе промежуточной ф-ции:

Если ф-ции f(х) и f(х) имеют один и тот же предел

А в т.Хо и ф-ция f(х)<f(х)<f(х) в некоторой прокол.

окр.т.Хо,то тогда сущ.предел f(х) и он равен А.

ТЕОРЕМА о переходе к пределу под знаком непрерывной

ф-ции:

Если ф-ция f(u) непрерывна в т.Uо,а ф-ция u= (х) имеет

предел в т.Хо,и предел ф-ции (х) равен Uо,то тогда

сложная ф-ция f[ (х)] имеет предел в т.Хо и этот предел

равен f(Uо),т.е. предел f[ (х)] равен значению ф-ции

от предела .f[ (х)]=flim (х).

§4 О ПРЕДЕЛАХ СВЯЗАННЫХ С ЧИСЛОМ e.

ЧИСЛОВОЙ ПОСЛЕДОВАТЕЛЬНОСТЬЮ называется ф-ция,область

определения которой -натуральные числа.

Формула НЬЮТОНА-бинома:

(a+b)= с a b

c=n!/k!(n-k)!

c -кол-во сочетаний из n по k.

n!=1*2*3*...*n

СОЧЕТАНИЯМИ называются всевозможные подмножества данного

множества,в частности рассматривают сочетания множества

из n-элементов по k-элементов.

Замечание: 0!=1

Таблица биномиальных коэффициентов:

n=1 1 1

n=2 1 2 1

n=3 1 3 3 1

n=4 1 4 6 4 1

n=5 1 5 10 10 5 1

n=6 1 6 15 20 15 6 1

lim(1+x) =e

§5 БЕСКОНЕЧНО БОЛЬШИЕ Ф-ЦИИ.ПОВЕДЕНИЕ Ф-ЦИИ В

БЕСКОНЕЧНОСТИ.АСИМТОТЫ.

Ф-ция f(х) называется бесконечно большой в окр.т.Хо,если

1/f(х) будет б.м.

Асимтоты:

Прямая Т называется асимтотой кривой L,если растояние от

т.М,лежащей на кривой L,до прямой Т стремится к 0,когда

т.М по кривой удаляется в бесконечность,т.е. когда

растояние от т.М до фиксированной т.О стремится в беско-

нечность.

Асимтоты графиков ф-ции:

Теорема#1:Для того,чтобы прямая kx+b была асимтотой при

х+ ,необходимо и достаточно,чтобы f(х)=kx+b+ (х) при

х+ .

Теорема#2:Для того,чтобы прямая y=kx+b была ас-той гр-ка

ф-ции f(х) при х+ ,необходимо и достаточно существование

предела при х+ f(х)/х=k и сущ.предела при х+

[f(х)-kx]=b,т.е.,если хотя бы один из пределов не сущ.,то

ас-ты нет.

Исследование поведения ф-ции в окр.точки

разрыва.Классификация точек разрыва:

0:ТОЧКА УСТРАНИМОГО РАЗРЫВА-точка, в которой ф-ция имеет

предел,но не является непрерывной.

1:ТОЧКА РАЗРЫВА ПЕРВОГО РОДА-точка,в которой ф-ция имеет

предел слева,имеет предел справа, но эти пределы не равны.

2:ТОЧКА РАЗРЫВА ВТОРОГО РОДА-точка,которая не является

точкой устранимого разрыва и точкой разрыва первого рода.

§6 ЛОКАЛЬНЫЕ И ГЛОБАЛЬНЫЕ СВ-ВА НЕПРЕРЫВНЫХ Ф-ЦИЙ.

ЛОКАЛЬНЫЕ СВ-ВА-св-ва ф-ции непрерывных в данной точке,

т.к. непрер.ф-ция имеет предел,то все св-ва таких ф-ций,

имеющих предел,распространяются на непрерывные.

Свойства:если f(х) непрер.в т.Хо и f(Хо)>0,то ф-я больше

нуля в некоторой окр.т.Хо или;если f(х) и f(х) непрер.

в т.Хо,то их сумма тоже непрер.в этой точке.

ГЛОБАЛЬНЫЕ СВ-ВА:

Ф-ция f(х) называется непрерывной на отр.[a;b],если она

непрерыв.в каждой точке интервала (a;b) и непрерывна в

т.А справа и в т.В слева.

lim f(x)=f(a),lim f(x)=f(b)

ТЕОРЕМЫ КОШИ:

Теорема#1:Если ф-ция f(х) непр. на отр.[a;b] и на концах

отрезка принимает значения разных знаков (f(а)*f(b)<0),

то сущ.точка С на отр.[a;b],такая что f(С)=0.

Теорема#2:Если ф-ция непр. на отр.[a;b] и на концах отр.

принимает разные значения (f(a)=f(b)),то тогда для любого

числа Q,лежащего между f(а) и f(b),сущ.т.С,принадлеж.отр.

[a;b],такая что f(С)=Q.

ТЕОРЕМЫ ВЕЙЕРШТРАССА:

Теорема#1:Если ф-ция f(х) непр. на отр.[a;b],то сущ.

числа m<f(x)<M в каждой точке этого отрезка (т.е.ф-я

ограничена)

Теорема#2:Если ф-ция f(х) непр.на отр.[a;b],то сущ.

точки x и x [a;b],такие что f(x )<f(x)<f(x ) в каждой

точке этого отрезка.

ГЛАВА#2:ВЕКТОРНАЯ АЛГЕБРА.

§1.ПОНЯТИЕ ВЕКТОРА.ЛИНЕЙНЫЕ ОПЕРАЦИИ НАД ВЕКТОРАМИ И СВ-ВА.

Отрезок AB называется направленным,если указана,какая из

точек A и B явл.началом,а какая концом.

Два направленных отрезка называются равными,если они лежат

на одной или на параллельных прямых,со-направлены и имеют

одинаковые длины,т.е.если один получается из другого парал.

переносом.

Вектором называется направленный отрезок.

Векторы называются коллинеарными,если они лежат на одной прямой

или на парал. прямых.

Векторы называются компланарными,если они лежат в одной или

парал. пл-тях.

Суммой векторов a и b называется вектор,обозначенный a+b,начало

которого совпадает с началом вектора a,а конец -с концом b,

при условии,что начало вектора b совмещено с концом а.

Произведением а на число называется вектор,обозначенный

а,такой что:

1.¦ a¦=¦ ¦*¦a¦

a=0,если =0

2. দа

দа,если >0

দа,если <0

Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.