Распределение сигналов ТВ программ на большие расстояния по территории России осуществляется с помощью разветвленной сети радиорелейных линий (РРЛ) и спутниковых систем связи «Орбита», «Экран», «Москва». Причем наземная распределительная сеть включает в себя свыше 300 тыс. канало-километров РРЛ.
В состав современной сети ТВ вещания нашей страны входят так же около 85 млн. телевизоров.
Организовано ТВ вещание по зональному принципу с поочередным повторением передачи центральных программ для каждой из пяти существующих зон со сдвигом во времени на 2 ч.
С целью классификации выделенная для ТВ вещания полоса час тот электромагнитных колебаний условно разбита на пять частотных диапазонов, в которых может быть размещено 74 радиоканала:
1-й диапазон 48,5...66 МГц (радиоканалы 1 и 2);
2-й диапазон 76... 100 МГц (радиоканалы 3-5);
3-й диапазон 174...230 МГц (радиоканалы 6-12);
4-й диапазон 470...582 МГц (радиоканалы 21-34);
5-й диапазон 582...960 МГц (радиоканалы 35-82).
Хочется заметить, что радиоканалы ни в коем случае не соответствуют настройкам на индивидуальных ТВ приемниках.
Важным фактором формирования и развития ТВ является система построения мнопрограммного вещания. В мировой практике наметилось три основных пути построения сети многопрограммного ТВ вещания:
Первый путь - это создание систем кабельного ТВ различной ем кости с подачей на них ТВ сигналов нескольких десятков программ путем приема от ближайших ТВ передатчиков или передачи по радиорелейным, кабельным и спутниковым линиям связи. Предполагается также создание специальных ТВ программ, в том числе платных.
Второй путь - это внедрение спутниковых систем непосредственного ТВ вещания в диапазоне 12 ГГц с установкой у абонента дополнительного приемо-передающего устройства для подачи стандартно го ТВ сигнала на вход телевизора.
Третий путь - это развитие наземного телевидения при реализации систем сотового телевидения с низким уровнем излучения электромагнитных волн. Системы сотового телевидения работают после дующему принципу: в пределах зоны телевещания устанавливают сеть радиопередатчиков (базовых станций - БС) с радиусом действия5...6 км. Специальные устройства, установленные на базовых станциях, улавливают сигналы различных программ с разных спутников связи и ретранслируют их абонентам, которые имеют возможность принимать в среднем до 100 ТВ программ.
Ближайшее будущее большинства систем ТВ вещания заключается в переходе на цифровые технологии. Первыми примерами цифровых систем передачи ТВ сигналов явились спутниковые линии связи, в которых стал использоваться стандарт сжатия спектра ТВ сигналов MPEG-2, позволяющий по одному стандартному спутниковому каналу передавать несколько ТВ программ при условии их приема в первую очередь головными станциями систем кабельного телевидения.
Наконец, наметилась тенденция к внедрению наземного цифрового ТВ вещания.
Внедрение цифрового телевидения, в первую очередь, было ознаменовано созданием унифицированного оборудования аппаратно-студийных комплексов (АСК), использующих единый (мировой) стандарт цифрового кодирования, который со временем вытеснит несовместимые между собой стандартные системы цветного телевидения SEC AM, PAL, NTSC. На выходе таких комплексов временно устанавливаются цифроаналоговые преобразователи (ЦАП) для получения стандартных ТВ сигналов перечисленных выше систем, так как излучать радиосигналы вещательного телевидения в переходный период предполагается и в аналоговом, и в цифровом виде. В пределах АСК цифровые сигналы обрабатываются по единой технологии, при этом обеспечивается высокая стабильность параметров оборудования, которое сможет работать в бесподстроечном режиме.
Технологическими лидерами в области цифрового ТВ вещания являются страны Европейского Союза, США и Япония. В 1993 г. европейской группой вещательных, промышленных и законодательных организаций был учрежден Project DVB (проект цифрового видеовещания Digital Video Broadcasting).
Одним из фундаментальных решений, принятых в период функционирования Project DVB, был выбор алгоритма MPEG-2 для системного уровня, т.е. для кодирования источников аудио- и видеоинформации, а также для создания элементарных программных и транспортных потоков.
Стандарты, разработанные в рамках Project DVB, применяются в системах цифрового аудио- и видеовещания и передачи данных по спутниковым, кабельным и наземным сетям и определяют соответствующие системные рекомендации для кабельного (DVB-C), наземного (DVB-T) и спутникового (DVB-S) ТВ вещания. Европейский стандарт наземного цифрового ТВ вещания предусматривает использование модуляции типа OFDM (Orthogonal Frequency Division Multiplexing -частотное уплотнение с ортогональными несущими). В случае модуляции типа OFDM поток данных передается с помощью большого числа несущих. Подобно квадратурной модуляции, способ OFDM использует ортогональные несущие, но в отличие от квадратурной модуляции частоты этих несущих не являются одинаковыми, они расположены в некотором диапазоне частот, отведенном для передачи данных путем модуляции, и кратны некоторой основной частоте. В качестве первичного метода модуляции отдельных несущих могут использоваться квадратурная амплитудная модуляция типа 16-QAM или 64-QAM (Quadrature Amplitude Modulation), а также QPSK (Quadrature Phase Shift Keying - четырехпозиционная фазовая манипуляция).
На американском континенте главенствующую роль в разработке стандартов на цифровое ТВ вещание принадлежит Комитету по усовершенствованным системам телевидения - ATSC (Advanced Television Systems Committee). Разработанный этим комитетом стандарт на наземное цифровое ТВ вещание ATSC в части кодирования и структурирования информации также основывается на алгоритме MPEG-2, но принципиально отличается от Project DVB по методам модуляции и обработки радиосигнала, кодирования звука и программной навигации, что было сделано исходя из особенностей построения сети на земного ТВ вещания США. В стандарте ATSC используется много уровневая амплитудная модуляция с частично подавленной несущей и боковой полосой частот (VSB-Vestigial Side Band).
В Японии разработана концепция цифрового ТВ вещания с интеграцией служб ISDB (Integrated Services Digital Broadcasting), которая является общей для наземных спутниковых и кабельных сетей. При чем стандарты ISDB-T и DVB-T во многом схожи, отличие заключается в возможности в системе ISDB-T использовать для передачи ин формации нескольких разнесенных полос частотного спектра.
Стратегия перехода от аналогового к цифровому ТВ вещанию в Российской Федерации определяется специально разработанной в 1999 году «Концепцией внедрения цифрового телевидения и звукового вещания в России», рассчитанной до 2015 г. В соответствии с принятой «Концепцией ...» на первом этапе цифровое вещание реализуется в отдельных опытных зонах (г. Москва, Санкт-Петербург, Нижний Новгород), где имеется возможность проверить эффективность работы системы цифрового ТВ вещания совместно со средствами аналогового телевидения, связи, компьютерными информационными службами. Анализ международных стандартов и результатов отечественных испытаний системы наземного цифрового ТВ вещания позволяет разработать временные нормы и адаптировать международные стандарты цифрового телевещания для России. На втором этапе должны быть разработаны и утверждены стандарты цифрового вещания и выработаны предложения по промышленному выпуску ТВ оборудования и массовому внедрению цифрового ТВ вещания в нашей стране.
Рассмотрев техническую сторону телевидения, которая начинается от передатчика и заканчивается зрительным восприятием самого человека, мне бы хотелось рассмотреть технику работы с полученным изображением и сам процесс съемок.
Процесс съемок должен не заставлять зрителя увидеть что то важное, как считает А. Князев, а убедить его в важности. Существует множество способов незаметно, неназойливо убедить его направить взгляд в нужную вам точку, не прибегая к насильственным крупным планам. Можно соответственным образом построить композицию сцены, сопровождая зрителя при обходе места события, или же использовать освещение. Дальний план покажет зрителю целиком место действия, поможет ему "войти" в ситуацию, понять пространственное соотношение людей и предметов. Дальний план имеет и недостатки. Зрителю не видны детали, подробности.. Дальний план дает лишь самое общее представление о сцене. Однако он же дает зрителю возможность оглядеться, обдумать то, что происходит на экране; позволяет подчинить внимание зрителя, не отвлекая его на мелкие детали. Продуманная и хорошо смонтированная программа должна состоять из чередования крупных и общих кадров, каждый из которых тщательно подобран для исполнения своей функции: помочь аудитории увидеть, где происходит действие, что именно там происходит, понять это действие, увидеть все подробности и детали, и т.д. И все это - с учетом содержания каждого кадра, подчиненного общей идее журналистского материала. Поле зрения объектива камеры меняется в зависимости от фокусного расстояния. Объектив типа "зум" (трансфокатор) может быть установлен на любое фокусное расстояние в пределах его диапазона. Если это система 6:1 (шесть к одному), значит, самый широкий угол зрения объектива может быть сужен в шесть раз (самое короткое фокусное расстояние в шесть раз меньше самого длинного). Типичными системами являются 6:1, 8:1 и до 18:1, но встречаются даже 44:1 и более. Некоторые большие трансфокаторы оснащаются насадками, позволяющими дополнительно увеличивать их фокусные расстояния. Насадки применяются, когда возникает необходимость в фокусном расстоянии, которое превышает диапазон объектива. Обычно насадка удваивает фокусное расстояние. Однако при этом ухудшается изображение по причине потери в светосиле объектива. Другой способ изменить максимальный или минимальный угол зрения объектива - это воспользоваться дополнительным объективом (телеконвертором). Телеконвертор 1,5 позволяет превратить объектив 6:1 в систему 9:1. Аналогичный широкоугольный дополнительный объектив дает возможность расширить поле зрения объектива. Кроме того, существует возможность удвоить фокусное расстояние с помощью переходных колец (адаптеров). Кольца навинчиваются между камерой и основным объективом. Это дает хорошие результаты, однако, в этом случае падает разрешающая способность. Конечно, каждый из этих способов увеличивать фокусное расстояние объектива имеет свои недостатки, но все же позволяет расширить диапазон возможностей вашей камеры. И последнее, как вам известно, вы всегда можете заменить свой объектив другим, с более подходящим фиксированным фокусным расстоянием.
Использование трансфокатора ("зума").
При смене фокусного расстояния трансфокатора или вариообъектива (известного также как "зум"), изображение расширяется или сужается. Использование "зума" может дать очень много при съемках. Оно позволяет незаметно изменять ширину плана, не перемещая камеру. С его помощью можно проделать это куда более плавно, чем с помощью наезда или отъезда. С помощью "зума" можно имитировать стремительное приближение или удаление от объекта съемки. Но все же это искусственный прием, и им слишком часто злоупотребляют. При этом страдает зрительское ощущение пространства и масштаба. Разные объекты требуют разного подхода. При сужении угла изображения наводка на фокус затрудняется. А чересчур быстрая и резкая смена фокусного расстояния может даже вызвать тошноту. Ручная наводка позволяет варьировать фокусное расстояние незаметно, и с любой скоростью. Но если фокус меняется и одновременно меняется экспозиция по ходу съемки, камера может покачнуться. В любительских камерах обычно наводка на фокус производится автоматически. В профессиональной видеосъемке фокусировку осуществляет оператор вручную. Трансфокатор с электроприводом обеспечивает плавную, но менее точную регулировку. В зависимости от модели, автоматический трансфокатор может менять фокус с одной, с двумя (быстро/медленно), или с несколькими скоростями . Трансфокатор с электроприводом имеет еще и тот недостаток, что дополнительно расходует энергию батарей.
Страницы: 1, 2, 3, 4, 5, 6