1.8.1. Теоретическое индикаторное давление равно:
Действительное среднее индикаторное давление:
,
где - коэффициент, учитывающий «скругление» индикаторной диаграммы.
1.8.3. Рассчитываем индикаторную мощность и индикаторный крутящий момент двигателя:
Н*м
Для 4-х тактного двигателя коэффициент тактности
1.8.4. Определяем индикаторный КПД и удельный расход топлива:
г/кВт*ч
1.9. Эффективные параметры рабочего цикла
1.9.1. Рассчитываем среднее давление механических потерь:
где - коэффициенты, зависящие от числа цилиндров (i=4<6), от отношения хода поршня к диаметру цилиндра (S/D= 0,07/0,082=0,853<1) и от типа камеры сгорания. Принимаем и
Средняя скорость поршня:
1.9.2. Рассчитываем среднее эффективное давление:
1.9.3. Рассчитываем механический КПД:
1.9.4. Определяем эффективную мощность:
1.9.5. Определяем эффективный КПД:
1.9.6. Определяем эффективный удельный расход топлива:
1.9.7. Эффективный крутящий момент:
1.9.8. Расход топлива:
1.9.9. Литровая мощность:
1.10. Построение индикаторной диаграммы в координатах (P-V)
Строим теоретическую индикаторную диаграмму в координатах P-V. На оси абсцисс откладываем значение объёма камеры сгорания .
За масштаб давления принимаем значение .
Далее в принятом масштабе откладываем объём: мм
Параметры необходимые для построения диаграммы:
Через точки z, r, a - проводим прямые, параллельные оси абсцисс. Точки c, b, a - соединяем прямыми, параллельными оси ординат. Точки а и с соединяем линией процесса политропы сжатия, а точки z и b - линией процесса политропы расширения. Построение линий процессов сжатия и расширения выполняем аналитическим методом.
Для построения линий процессов сжатия a - c и расширения z - b определим давление в нескольких промежуточных точках. Для этого зададимся несколькими промежуточными значениями объёма в интервале рабочего хода поршня.
Тогда давление для значений объёмов составляем:
для процесса политропы сжатия
40
60
80
100
120
140
160
180
21,2
12,08
8,1
6
4,6
3,7
3
2,6
для процесса политропы расширения
82,3
49
34
25,5
20,2
16,6
14,02
12,07
Через точки а, с и полученные промежуточные точки для процесса политропы сжатия проводим плавную прямую - политропу сжатия. Через точки b, z и полученные точки для процесса политропы расширения проводим другую плавную прямую - политропу расширения.
1.11. Тепловой баланс.
1.11.1. Из пункта 1.9.5. известно, что доля теплоты, затраченная на полезную работу
1.11.2. Доля теплоты, потерянная в ДВС из-за недогорания топлива при б=1:
1.11.3. Доля теплоты, унесённая отработавшими газами :
Определяем энтальпию отработавших газов при температурах 0..1143°C:
Из таблицы 4 с учётом б=1 и принимаем .
При и б=1:
Определяем энтальпию топливо-воздушной смеси в конце пуска:
1.11.4. Доля тепла, передаваемая охлаждающей среде:
1.12. Скоростная характеристика двигателя.
Построение внешней скоростной характеристики ведём в интервале , предварительно задавшись шагом , где ;
.
1.12.1. Мощность двигателя:
При ,
1.12.2. Крутящий момент:
1.12.3 Среднее эффективное давление четырёхтактного двигателя:
1.12.4. Среднее давление механических потерь:
1.12.5. Среднее индикаторное давление:
1.12.6. Удельный эффективный расход топлива:
1.12.7. Часовой расход топлива:
Остальные данные приведены в таблице результатов расчета внешней скоростной характеристики.
Результаты расчёта внешней скоростной характеристики:
, об/мин
кВт
Нм
МПа
кг/ч
11,358
112,980
0,961
0,059
1,02
322,013
3,675
1960
24,933
121,476
1,033
0,086
1,119
354,451
8,83
2960
38,459
124,073
1,055
0,112
1,167
265,440
10,209
3960
50,082
120,770
1,027
0,138
1,165
265,067
13,275
4960
57,947
111,563
0,949
0,165
1,114
283,303
16,417
5960
60,199
96,453
0,820
0,191
1,011
320,147
19,273
60,293
99,268
0,844
0,187
1,031
313
18,872
54,987
75,482
0,641
0,218
0,859
375,6
20,653
2. ДИНАМИЧЕСКИЙ РАСЧЕТ
Динамический расчет автомобильного двигателя производится на режиме максимальной мощности по результатам теплового расчета. В результате расчета необходимо определить следующие силы и моменты, действующие в кривошипно-шатунном механизме двигателя:
- избыточное давление газов над поршнем , МПа;
- удельную суммарную силу, действующую на поршень, МПа;
- удельную суммарную силу, воспринимаемую стенками цилиндра (нормальное давление) , МПа;
- удельную силу инерции от возвратно-поступательно движущихся масс , МПа
- удельную силу, действующую вдоль шатуна, МПа;
- удельную силу, дейст-вующую вдоль кривошипа , МПа;
- удельную силу, направ-ленную по касательной к окружности радиуса криво-шипа , МПа;
- крутящий момент от одного цилиндра , Нм;
- крутящий момент от i цилиндров , Нм;
- удельную центробежную силу инерции от неуравно-вешенных вращающихся масс, сосредоточенных на радиусе кривошипа, МПа;
- удельную силу, дей-ствующую на шатунную шейку, МПа.
2.1. Расчет сил, действующих в КШМ
2.1.1. Построение развернутой индикаторной диаграммы в координатах р-б.
Перестройку индикаторной диаграммы из p-V в развернутую диаграмму удельных давлений (в координатах р-б), действующих на поршень, проще выполнить графическим методом Брикса. Метод Брикса заключается в том, что на длине хода поршня построенной индикаторной диаграммы в координатах p-V описывают полуокружность с центром в точке О.
Для учета влияния длины шатуна откладывают от центра полуокружности (точки О) по направлению нижней мертвой точки бицентровую поправку Брикса в масштабе диаграммы:
Страницы: 1, 2, 3, 4